Harmonic distortion minimization in multilevel converters for a wide range of modulation indexes

Author(s):  
H. R. Akbari ◽  
G. B. Gharehpetian
2018 ◽  
Vol 19 (2) ◽  
pp. 43-53
Author(s):  
Majdee Tohtayong ◽  
Sheroz Khan ◽  
MASHKURI BIN YAACOB ◽  
Siti Hajar Yusoff ◽  
NUR SHAHIDA BINTI MIDI ◽  
...  

ABSTRACT: This paper presents simulation results of the influence of wide range modulation index values ( ) in carrier-based PWM strategy for application in generating the stepped waveform. The waveform is tested for application in single-phase half-bridge modular multilevel converters (MMCs) topology. The results presented in this paper include a variation of the fundamental component (50 Hz) in the voltage output.  It also studies total harmonic distortion of the output voltage (THDv) and the output current (THDi) when the modulation index is changed over the linear-modulation region, 0 < < 1. It also explores the effect of a modulation index greater than 1. Moreover, different output voltage shapes, as a consequence of varied  on MMCs, are also illustrated for showing the effect of varying the value of on sub-module of MMCs. ABSTRAK: Kajian ini berkenaan tentang pengaruh simulasi terhadap pelbagai nilai indeks ( ) berasaskan strategi PWM bagi menghasilkan bentuk gelombang bertingkat. Bentuk gelombang ini diuji untuk aplikasi topologi MMCs. Keputusan menunjukkan variasi pada komponen asas (50Hz) pada voltan akhir. Keputusan menunjukkan jumlah penyelarasan harmonik voltan akhir (THDv) dan arus (THDv) apabila indeks modulasi telah ditukar pada had modulasi linear, 0 < < 1. Ia juga membincangkan tentang kesan indeks modulasi lebih daripada 1. Selain itu, bentuk voltan akhir yang berbeza mengikut perubahan nilai   pada MMCs juga dilampirkan bagi menunjukkan kesan perbezaan nilai    pada sub-modul MMCs.


2018 ◽  
Vol 19 (2) ◽  
pp. 182-191 ◽  
Author(s):  
Md Sazzad Hossien Chowdhury ◽  
Md. Alal Hosen ◽  
MOHAMMAD YEAKUB ALI ◽  
AHMAD FARIS ISMAIL

ABSTRACT: This paper presents simulation results of the influence of wide range modulation index values ( ) in carrier-based PWM strategy for application in generating the stepped waveform. The waveform is tested for application in single-phase half-bridge modular multilevel converters (MMCs) topology. The results presented in this paper include a variation of the fundamental component (50 Hz) in the voltage output.  It also studies total harmonic distortion of the output voltage (THDv) and the output current (THDi) when the modulation index is changed over the linear-modulation region, 0 < < 1. It also explores the effect of a modulation index greater than 1. Moreover, different output voltage shapes, as a consequence of varied on MMCs, are also illustrated for showing the effect of varying the value of on sub-module of MMCs. ABSTRAK: Penulisan ini berkenan simulasi pengaruh pelbagai nilai indeks modulasi     ( ) dalam strategi PWM berasaskan aplikasi dalam menghasilkan bentuk gelombang yang bertingkat. Bentuk gelombang ini diuji untuk aplikasi dalam topologi MMCs. Penilaian dan hasil dari artikle ini termasuk variasi komponen asas (50 Hz) dalam voltan keluar. Ia juga meneliti jumlah penyelarasan harmonik voltan keluar (THDv) dan arus keluaran (THDi) apabila indeks modulasi ditukar dalam rantau modulasi linear, 0 < <1. Ia juga meneroka kesan indeks modulasi lebih daripada 1. Selain itu, bentuk voltan keluar yang berbeza sebagai akibat dari pelbagai  pada MMCs juga digambarkan untuk menunjukkan kesan berbeza-beza nilai  pada sub-modul MMCs.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 529
Author(s):  
Cristian Verdugo ◽  
Jose Ignacio Candela ◽  
Pedro Rodriguez

Series connections of modules in cascaded multilevel converters are prone to power imbalances due to voltage differences on their DC side. When modules are connected to direct current (DC) sources, such as photovoltaic panels, the capability of withstanding power imbalances is crucial for generating the maximum power. In order to provide a possible solution for this requirement, this paper proposes a control strategy called Quadrature Voltage Compensation, which allows a wide range of power imbalances. The proposed control strategy regulates the power by introducing a circulating current between the arms and a phase angle in the output voltage. The impact of the circulating current and its effect on the phase voltage are studied. To highlight the features of the proposed strategy, an analytical model based on vector superposition is also described, demonstrating the strong capability of tolerating power differences. Finally, to validate the effectiveness of the Quadrature Voltage Compensation, simulation and experimental results are presented for a three-phase isolated multi-modular converter.


Author(s):  
Zoubir Zeghdi ◽  
Linda Barazane ◽  
Youcef Bekakra ◽  
Abdelkader Larabi

In this paper, an improved Backstepping control based on a recent optimization method called Ant Lion Optimizer (ALO) algorithm for a Doubly Fed Induction Generator (DFIG) driven by a wind turbine is designed and presented. ALO algorithm is applied for obtaining optimum Backstepping control (BCS) parameters that are able to make the drive more robust with a faster dynamic response, higher accuracy and steady performance. The fitness function of the ALO algorithm to be minimized is designed using some indexes criterion like Integral Time Absolute Error (ITAE) and Integral Time Square Error (ITSE). Simulation tests are carried out in MATLAB/Simulink environment to validate the effectiveness of the proposed BCS-ALO and compared to the conventional BCS control. The results prove that the objectives of this paper were accomplished in terms of robustness, better dynamic efficiency, reduced harmonic distortion, minimization of stator powers ripples and performing well in solving the problem of uncertainty of the model parameter.


Author(s):  
D Sattianadan ◽  
Soumen Gorai ◽  
G. R. Prudhvi Kumar ◽  
S. Vidyasagar ◽  
V. Shanmugasundaram

<p><span lang="EN-US">Harmonics and grid synchronization are one of the major problems faced when dealing with a single-phase system. The development of technology in the PV system makes the consumer to use it in a wide range. The power transferred from PV to grid needs DC to AC conversion process which is done by static devices operating with the higher frequencies that causes the harmonics in the grid connected system. The main aim of the paper is to implement grid synchronization and reduce total harmonic distortion in a single-phase grid connected system. The design of LCL filter is addressed in this paper which depends on current ripple, filter size and switching ripple attenuation.  In order to account the harmonic content, the FFT analysis is made both in analysis and Matlab Simulink. The Proportional Resonant (PR) controller is developed and work along with LCL filter for reducing the harmonic content. The stability of the system with PR is analyzed using root locus and bode plots and results are compared with PI controls. The result shows that PR controller performs better compared to the PI controller for reducing the harmonic content present in the single-phase system and for improving the system stability.</span></p>


Sign in / Sign up

Export Citation Format

Share Document