scholarly journals Cylinder pressure and combustion heat release estimation for SI engine diagnostics using nonlinear sliding observers

1995 ◽  
Vol 3 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yaojung Shiao ◽  
J.J. Moskwa
2021 ◽  
Author(s):  
Hengjie Guo ◽  
Roberto Torelli ◽  
James Szybist ◽  
Sibendu Som

2014 ◽  
Vol 984-985 ◽  
pp. 957-961
Author(s):  
Vijayashree ◽  
P. Tamil Porai ◽  
N.V. Mahalakshmi ◽  
V. Ganesan

This paper presents the modeling of in-cylinder pressure variation of a four-stroke single cylinder spark ignition engine. It uses instantaneous properties of working fluid, viz., gasoline to calculate heat release rates, needed to quantify combustion development. Cylinder pressure variation with respect to either volume or crank angle gives valuable information about the combustion process. The analysis of the pressure – volume or pressure-theta data of a engine cycle is a classical tool for engine studies. This paper aims at demonstrating the modeling of pressure variation as a function of crank angle as well as volume with the help of MATLAB program developed for this purpose. Towards this end, Woschni heat release model is used for the combustion process. The important parameter, viz., peak pressure for different compression ratios are used in the analysis. Predicted results are compared with experimental values obtained for a typical compression ratio of 8.3.


Author(s):  
Jianjun Zhu ◽  
Peng Li ◽  
Yufeng Xie ◽  
Xin Geng

The effects of compression ratio and fuel delivery advance angle on the combustion and emission characteristics of premixed methanol charge induced ignition by Fischer Tropsch diesel engine were investigated using a CY25TQ diesel engine. In the process of reducing the compression ratio from 16.9 to 15.4, the starting point of combustion is fluctuating, the peak of in-cylinder pressure and the maximum pressure increase rate decrease by 44.5% and 37.7% respectively. The peak instantaneous heat release rate increases by 54.4%. HC and CO emissions are on a rising trend. NOx and soot emissions were greatly decreased. The soot emission has the biggest drop of 50%. Reducing the fuel delivery advance angle will make the peak of in-cylinder pressure and the peak of pressure rise rate increase while the peak of heat release rate decreases. The soot emission is negatively correlated with the fuel delivery advance angle. When the fuel delivery advance angle is 16° CA, the soot emissions increased the most by 130%.


1994 ◽  
Author(s):  
Byeongjin Lim ◽  
Inkeon Lim ◽  
Jongbum Park ◽  
Youngjin Son ◽  
Eungseo Kim
Keyword(s):  

Fuel ◽  
2011 ◽  
Vol 90 (5) ◽  
pp. 1855-1867 ◽  
Author(s):  
D.C. Rakopoulos ◽  
C.D. Rakopoulos ◽  
R.G. Papagiannakis ◽  
D.C. Kyritsis

Sign in / Sign up

Export Citation Format

Share Document