Finite-Time Stabilization of Nonlinear Dynamical Systems via Control Vector Lyapunov Functions

Author(s):  
Sergey G. Nersesov ◽  
Wassim M. Haddad ◽  
Qing Hui
Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

This chapter develops vector dissipativity notions for large-scale nonlinear impulsive dynamical systems. In particular, it introduces a generalized definition of dissipativity for large-scale nonlinear impulsive dynamical systems in terms of a hybrid vector dissipation inequality involving a vector hybrid supply rate, a vector storage function, and an essentially nonnegative, semistable dissipation matrix. The chapter also defines generalized notions of a vector available storage and a vector required supply and shows that they are element-by-element ordered, nonnegative, and finite. Extended Kalman-Yakubovich-Popov conditions, in terms of the local impulsive subsystem dynamics and the interconnection constraints, are developed for characterizing vector dissipativeness via vector storage functions for large-scale impulsive dynamical systems. Finally, using the concepts of vector dissipativity and vector storage functions as candidate vector Lyapunov functions, the chapter presents feedback interconnection stability results of large-scale impulsive nonlinear dynamical systems.


Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, with an emphasis on vector Lyapunov function methods and vector dissipativity theory. It examines large-scale continuous-time interconnected dynamical systems and describes thermodynamic modeling of large-scale interconnected systems, along with the use of vector Lyapunov functions to control large-scale dynamical systems. It also discusses finite-time stabilization of large-scale systems via control vector Lyapunov functions, coordination control for multiagent interconnected systems, large-scale impulsive dynamical systems, finite-time stabilization of large-scale impulsive dynamical systems, and hybrid decentralized maximum entropy control for large-scale systems. This chapter provides a brief introduction to large-scale interconnected dynamical systems as well as an overview of the book's structure.


Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

This chapter describes a fundamental stability theory for nonlinear dynamical systems using vector Lyapunov functions. It first introduces the notation and definitions before developing stability theorems via vector Lyapunov functions for continuous-time and discrete-time nonlinear dynamical systems. It then extends the theory of vector Lyapunov functions by constructing a generalized comparison system whose vector field can be a function of the comparison system states as well as the nonlinear dynamical system states. It also presents a generalized convergence result which, in the case of a scalar comparison system, specializes to the classical Krasovskii–LaSalle theorem. In the analysis of large-scale nonlinear interconnected dynamical systems, several Lyapunov functions arise naturally from the stability properties of each individual subsystem.


Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

This chapter introduces the notion of a control vector Lyapunov function as a generalization of control Lyapunov functions, showing that asymptotic stabilizability of a nonlinear dynamical system is equivalent to the existence of a control vector Lyapunov function. These control vector Lyapunov functions are used to develop a universal decentralized feedback control law for a decentralized nonlinear dynamical system that possesses guaranteed gain and sector margins in each decentralized input channel. The chapter also describes the connections between the notion of vector dissipativity and optimality of the proposed decentralized feedback control law. The proposed control framework is then used to construct decentralized controllers for large-scale nonlinear dynamical systems with robustness guarantees against full modeling uncertainty.


Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

This chapter develops a general framework for finite-time stability analysis based on control vector Lyapunov functions. Specifically, it develops a vector comparison system whose solution is finite-time stable and relates this finite-time stability property to the stability properties of a nonlinear dynamical system using a vector comparison principle. The results are specialized to the case of a scalar Lyapunov function to obtain universal finite-time stabilizers for nonlinear systems that are affine in the control. Finally, the utility of the proposed framework is demonstrated using two numerical examples: the first involves a large-scale dynamical system with control signals for each decentralized control channel as a function of time; the second example considers control of thermoacoustic instabilities in combustion processes.


Sign in / Sign up

Export Citation Format

Share Document