scholarly journals Study on Planetary Gear Degradation State Recognition Method Based on the Features With Multiple Perspectives and LLTSA

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 7565-7576 ◽  
Author(s):  
Xihui Chen ◽  
Hongyu Li ◽  
Gang Cheng ◽  
Liping Peng
Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xihui Chen ◽  
Liping Peng ◽  
Gang Cheng ◽  
Chengming Luo

Planetary gear is the key part of the transmission system for large complex electromechanical equipment, and in general, a series of degradation states are undergone and evolved into a local fatal fault in its full life cycle. So it is of great significance to recognize the degradation state of planetary gear for the purpose of maintenance repair, predicting development trend, and avoiding sudden fault. This paper proposed a degradation state recognition method of planetary gear based on multiscale information dimension of singular spectrum decomposition (SSD) and convolutional neural network (CNN). SSD can automatically realize the embedding dimension selection and component grouping segmentation, and the original vibration signal being nonlinear and nonstationary can be decomposed into a series of singular spectrum decomposition components (SSDCs), adaptively. Then, the multiscale information dimension which combines multiscale analysis and fractal information dimension is proposed for quantifying and extracting the feature information contained in each SSDC. Finally, CNN is used to achieve the effective recognition of the degradation state of planetary gear. The experimental results show that the proposed method can accurately recognize the degradation state of planetary gear, and the overall recognition rate is up to 97.2%, of which the recognition rate of normal planetary gear reaches 100%.


Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 701 ◽  
Author(s):  
Beige Ye ◽  
Taorong Qiu ◽  
Xiaoming Bai ◽  
Ping Liu

In view of the nonlinear characteristics of electroencephalography (EEG) signals collected in the driving fatigue state recognition research and the issue that the recognition accuracy of the driving fatigue state recognition method based on EEG is still unsatisfactory, this paper proposes a driving fatigue recognition method based on sample entropy (SE) and kernel principal component analysis (KPCA), which combines the advantage of the high recognition accuracy of sample entropy and the advantages of KPCA in dimensionality reduction for nonlinear principal components and the strong non-linear processing capability. By using support vector machine (SVM) classifier, the proposed method (called SE_KPCA) is tested on the EEG data, and compared with those based on fuzzy entropy (FE), combination entropy (CE), three kinds of entropies including SE, FE and CE that merged with KPCA. Experiment results show that the method is effective.


Author(s):  
Haixu Jiang ◽  
Ke Zhang ◽  
Jingyu Wang ◽  
Meibo Lü

Considering the difficulty in identifying the in-orbital spacecraft weak anomaly, a spacecraft anomaly state recognition method based on Morphological variational mode decomposition and JRD distance is proposed. First of all, the telemetry data of the spacecraft is decomposed into multi-scale modal functions with different frequencies via morphological variational modal decomposition. Then the Rényi entropy of each modal function is extracted, which is regarded as the feature of telemetry data. Finally, the recognition of spacecraft anomaly state is realized by comparing the JRD distance between the sample data and the measured data. The proposed method is verified by means of the telemetry data of the weak anomaly speed of a satellite reaction wheel. The simulation results demonstrate that the proposed method can effectively identify the anomaly of the spacecraft and has obvious advantage in recognition speed.


Sign in / Sign up

Export Citation Format

Share Document