scholarly journals The Impact of Bushing Thickness on the Piston/Cylinder Interface in Axial Piston Pump

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 24971-24977 ◽  
Author(s):  
Jiang Jihai ◽  
Wang Kelong ◽  
Wang Zebo ◽  
Sun Yi
Author(s):  
Hesheng Tang ◽  
Yan Ren ◽  
Jiawei Xiang ◽  
Kumar Anil

The spherical dimple texture have been designed on the rough surface of slipper bearing for improving the lubrication performance in axial piston pump. In this work, we have investigated and optimized the structure parameters of textures to obtain minimum friction coefficient as well as maximum loading capacity. Optimization of the geometry parameters of dimple texture by the integration of a hybrid evolutionary optimization method based on the sequential quadratic programming and genetic algorithm. Parametric analysis is applied for the evaluation of the impact level of geometry parameters on lubrication performance. The results shows that hybrid genetic method can be used for the optimization of slipper bearing with spherical dimple textures to generate lower friction coefficient and greater capacity of load carrying. The carrying capacity and friction coefficient of slipper bearing demonstrate a 64.8% and 4.5% improvements after multi-objective optimization. When the texture radius and depth are set to 18 µm and 0.8 µm, there exists the greatest load carrying force and lowest friction coefficient. This work presents a key designing guide for axial piston pump textured slipper bearings.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 222865-222875
Author(s):  
Jihai Jiang ◽  
Zebo Wang ◽  
Geqiang Li

Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 68 ◽  
Author(s):  
Jin Zhang ◽  
Baolei Liu ◽  
Ruiqi LÜ ◽  
Qifan Yang ◽  
Qimei Dai

The piston-cylinder pair is the key friction pairs in the piston pump. Its performance determines the volume efficiency of piston pump. With the increase of load pressure, the leakage at the clearance of piston-cylinder pair will also increase. In order to reduce leakage, the clearance of the piston-cylinder pair of the ultra-high pressure piston pump is smaller than that of the medium-high pressure piston pump. In order to explore whether the piston will stuck in the narrow gap, it is necessary to study the oil film characteristics of the piston-cylinder pair under the condition of ultra-high pressure, so as to provide a theoretical basis for the optimal design of the piston-cylinder pair of ultra-high pressure axial piston pump. In this paper, an ultra-high pressure axial piston pump is taken as the research object, and its structural characteristics are analyzed. The mathematical model of the oil film thickness of the piston-cylinder pair is established by using the cosine theorem in the cross section of the piston. The finite volume method is used to discretize the Reynolds equation of the oil film of the piston-cylinder pair, and the over relaxation iteration method is used to solve the discrete equations, and the mathematical model of the oil film pressure of the piston-cylinder pair is obtained. The mathematical model of oil film thickness and pressure field of piston-cylinder pair is solved by programming. The dynamic change process of oil film thickness and pressure field of the plunger pair of the ultra-high pressure axial piston pump under the load of 20 MPa and 70 MPa is obtained. Under the two conditions, the thinnest area of the oil film reaches 3 μm and 2 μm dangerous area respectively; the oil film pressure reaches 20 MPa and 70 MPa respectively when the swashplate rotates 10° and continues to increase with the increase of swashplate rotation angle. When the rotation angle reaches 90°, the oil film pressure also reaches the maximum value, but there is no pressure spike phenomenon. The oil film pressure characteristics of ultra-high pressure axial piston pump under conventional and ultra-high pressure conditions were obtained by modification and experimentation.


2004 ◽  
Vol 126 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Noah D. Manring ◽  
Zhilin Dong

In this paper, the control and containment forces acting on the swash plate of an axial-piston pump are examined. The most novel aspect of this research is that it includes the analysis of a secondary swash-plate angle that is occasionally used in aerospace pump applications. From a practical standpoint, swash-plate control and containment devices take on many different designs; however, they must all resist the same essential moments and forces that attempt to dislocate the swash plate from its proper position. By considering the basic machine design without its control and containment mechanisms, this work generally derives the needed forces and moments for insuring proper swash plate motion and thereby gives the designer of these machines a useful tool for designing control and containment devices of any type. In this research, the dynamic characteristics of the control and containment forces are studied by deriving instantaneous and average equations of motion for the swash plate. Results from this analysis are generated by holding the pump speed and discharge pressure constant, and by prescribing a typical second-order response for the primary swash plate angle. In conclusion, it is shown that the primary advantage of implementing a secondary swash-plate angle is that it can be used to reduce the overall control effort of the pump. Disadvantages of using the secondary swash-plate angle are associated with additional containment requirements for the swash plate.


2020 ◽  
Author(s):  
Fei Lyu ◽  
◽  
Junhui Zhang ◽  
Bing Xu ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document