scholarly journals Modeling the Load of the Kinematic Pair Piston-cylinder in an Axial Piston Pump by Means of FEA

2017 ◽  
Vol 177 ◽  
pp. 233-240 ◽  
Author(s):  
Tadeusz Zloto ◽  
Piotr Stryjewski
2018 ◽  
Vol 157 ◽  
pp. 08013 ◽  
Author(s):  
Tadeusz Złoto ◽  
Konrad Kowalski

The paper presents problems related to the twisting moment of the slipper. The load of the slipper and the piston has been presented and the complex formula of twisting moment of the slipper has been established. Achieved results has been presented graphically. The conducted research has indicated that the value of the twisting moment relays on both the exploitation and geometrical parameters.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 68 ◽  
Author(s):  
Jin Zhang ◽  
Baolei Liu ◽  
Ruiqi LÜ ◽  
Qifan Yang ◽  
Qimei Dai

The piston-cylinder pair is the key friction pairs in the piston pump. Its performance determines the volume efficiency of piston pump. With the increase of load pressure, the leakage at the clearance of piston-cylinder pair will also increase. In order to reduce leakage, the clearance of the piston-cylinder pair of the ultra-high pressure piston pump is smaller than that of the medium-high pressure piston pump. In order to explore whether the piston will stuck in the narrow gap, it is necessary to study the oil film characteristics of the piston-cylinder pair under the condition of ultra-high pressure, so as to provide a theoretical basis for the optimal design of the piston-cylinder pair of ultra-high pressure axial piston pump. In this paper, an ultra-high pressure axial piston pump is taken as the research object, and its structural characteristics are analyzed. The mathematical model of the oil film thickness of the piston-cylinder pair is established by using the cosine theorem in the cross section of the piston. The finite volume method is used to discretize the Reynolds equation of the oil film of the piston-cylinder pair, and the over relaxation iteration method is used to solve the discrete equations, and the mathematical model of the oil film pressure of the piston-cylinder pair is obtained. The mathematical model of oil film thickness and pressure field of piston-cylinder pair is solved by programming. The dynamic change process of oil film thickness and pressure field of the plunger pair of the ultra-high pressure axial piston pump under the load of 20 MPa and 70 MPa is obtained. Under the two conditions, the thinnest area of the oil film reaches 3 μm and 2 μm dangerous area respectively; the oil film pressure reaches 20 MPa and 70 MPa respectively when the swashplate rotates 10° and continues to increase with the increase of swashplate rotation angle. When the rotation angle reaches 90°, the oil film pressure also reaches the maximum value, but there is no pressure spike phenomenon. The oil film pressure characteristics of ultra-high pressure axial piston pump under conventional and ultra-high pressure conditions were obtained by modification and experimentation.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 24971-24977 ◽  
Author(s):  
Jiang Jihai ◽  
Wang Kelong ◽  
Wang Zebo ◽  
Sun Yi

2020 ◽  
Author(s):  
Fei Lyu ◽  
◽  
Junhui Zhang ◽  
Bing Xu ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document