scholarly journals Improved Kidney-Inspired Algorithm Approach for Tuning of PID Controller in AVR System

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 39935-39947 ◽  
Author(s):  
Serdar Ekinci ◽  
Baran Hekimoglu
Keyword(s):  
2018 ◽  
Vol 41 (6) ◽  
pp. 1761-1771 ◽  
Author(s):  
Baran Hekimoğlu

A novel design method, sine-cosine algorithm (SCA) is presented in this paper to determine optimum proportional-integral-derivative (PID) controller parameters of an automatic voltage regulator (AVR) system. The proposed approach is a simple yet effective algorithm that has balanced exploration and exploitation capabilities to search the solutions space effectively to find the best result. The simplicity of the algorithm provides fast and high-quality tuning of optimum PID controller parameters. The proposed SCA-PID controller is validated by using a time domain performance index. The proposed method was found efficient and robust in improving the transient response of AVR system compared with the PID controllers based on Ziegler-Nichols (ZN), differential evolution (DE), artificial bee colony (ABC) and bio-geography-based optimization (BBO) tuning methods.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1472 ◽  
Author(s):  
Ismail Akbar Khan ◽  
Ali S. Alghamdi ◽  
Touqeer Ahmed Jumani ◽  
Arbab Alamgir ◽  
Ahmed Bilal Awan ◽  
...  

Owing to the superior transient and steady-state performance of the fractional-order proportional-integral-derivative (FOPID) controller over its conventional counterpart, this paper exploited its application in an automatic voltage regulator (AVR) system. Since the FOPID controller contains two more control parameters (µ and λ ) as compared to the conventional PID controller, its tuning process was comparatively more complex. Thus, the intelligence of one of the most recently developed metaheuristic algorithms, called the salp swarm optimization algorithm (SSA), was utilized to select the optimized parameters of the FOPID controller in order to achieve the optimal dynamic response and enhanced stability of the studied AVR system. To validate the effectiveness of the proposed method, its performance was compared with that of the recently used tuning methods for the same system configuration and operating conditions. Furthermore, a stability analysis was carried out using pole-zero and bode stability criteria. Finally, in order to check the robustness of the developed system against the system parameter variations, a robustness analysis of the developed system was undertaken. The results show that the proposed SSA-based FOPID tuning method for the AVR system outperformed its conventional counterparts in terms of dynamic response and stability measures.


Sign in / Sign up

Export Citation Format

Share Document