Sine-cosine algorithm-based optimization for automatic voltage regulator system

2018 ◽  
Vol 41 (6) ◽  
pp. 1761-1771 ◽  
Author(s):  
Baran Hekimoğlu

A novel design method, sine-cosine algorithm (SCA) is presented in this paper to determine optimum proportional-integral-derivative (PID) controller parameters of an automatic voltage regulator (AVR) system. The proposed approach is a simple yet effective algorithm that has balanced exploration and exploitation capabilities to search the solutions space effectively to find the best result. The simplicity of the algorithm provides fast and high-quality tuning of optimum PID controller parameters. The proposed SCA-PID controller is validated by using a time domain performance index. The proposed method was found efficient and robust in improving the transient response of AVR system compared with the PID controllers based on Ziegler-Nichols (ZN), differential evolution (DE), artificial bee colony (ABC) and bio-geography-based optimization (BBO) tuning methods.

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1472 ◽  
Author(s):  
Ismail Akbar Khan ◽  
Ali S. Alghamdi ◽  
Touqeer Ahmed Jumani ◽  
Arbab Alamgir ◽  
Ahmed Bilal Awan ◽  
...  

Owing to the superior transient and steady-state performance of the fractional-order proportional-integral-derivative (FOPID) controller over its conventional counterpart, this paper exploited its application in an automatic voltage regulator (AVR) system. Since the FOPID controller contains two more control parameters (µ and λ ) as compared to the conventional PID controller, its tuning process was comparatively more complex. Thus, the intelligence of one of the most recently developed metaheuristic algorithms, called the salp swarm optimization algorithm (SSA), was utilized to select the optimized parameters of the FOPID controller in order to achieve the optimal dynamic response and enhanced stability of the studied AVR system. To validate the effectiveness of the proposed method, its performance was compared with that of the recently used tuning methods for the same system configuration and operating conditions. Furthermore, a stability analysis was carried out using pole-zero and bode stability criteria. Finally, in order to check the robustness of the developed system against the system parameter variations, a robustness analysis of the developed system was undertaken. The results show that the proposed SSA-based FOPID tuning method for the AVR system outperformed its conventional counterparts in terms of dynamic response and stability measures.


2015 ◽  
Vol 743 ◽  
pp. 142-145
Author(s):  
E.Z. Song ◽  
N.S.I. Albakirat ◽  
N.F. Mohammed

An efficient controller named Intelligent PID is proposed based on hybridization between original PID tuning methods and fast genetic algorithm (FGA) to enhance the transient response of automatic voltage regulator (AVR) in synchronous machine. PID controller has several advantages compared with another controller, but it’s susceptible to the local minima problem and does not give sufficient output response. Therefore, FGA is used here to overcome this problem and to enhance the output response. The performance of the proposed controller is tested and compared with the original PID controller. The results demonstrate that, the intelligent PID is an effective controller to enhance the transient voltage response of AVR system.


2018 ◽  
Vol 15 (3) ◽  
pp. 373-387 ◽  
Author(s):  
Rosy Pradhan ◽  
Santosh Kumar Majhi ◽  
Bibhuti Bhusan Pati

Purpose Now days, various techniques are used for controlling the plants. New ideas are evolving day by day to get better-quality control for various industrial processes to produce high-quality products. Currently, the focus of this research is being emphasized on application of nature-inspired algorithms in control systems. The purpose of this paper is to apply a nature-inspired algorithm called Ant Lion Optimizer (ALO) for the design of proportional-integrator-derivative (PID) controller for an automatic voltage regulator (AVR) system. Design/methodology/approach For the design of the PID controller, the ALO algorithm is considered as a designing tool for obtaining the optimal values of the controller parameter. All the simulations are carried out in Simulink/MATLAB environment. A comparative study is carried out with some modern nature-inspired algorithm to describe the advantages of this tuning method. Findings The proposed method has superiority value in transient and frequency domain analysis than the other published heuristic optimization algorithms. The presented approach has almost no variation in transient response when varying time constants of the system parameter, such as exciter, generator, amplifier and sensor from −50 per cent to +50 per cent. In addition, the close loop system is robust against any disturbances such as input–output disturbances and parametric uncertainty, as the sensitivity values are nearly equal to one. Originality/value The proposed method presents the design and performance analysis of proportional integral derivate (PID) controller for an AVR system using the recently proposed ALO.


2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
XianHong Li ◽  
HaiBin Yu ◽  
MingZhe Yuan

This paper presents a design method of the optimal proportional-integral-derivative (PID) controller withɛ-Routh stability for different processes through Lyapunov approach. The optimal PID controller could be acquired by minimizing an augmented integral squared error (AISE) performance index which contains control error and at least first-order error derivative, or even may containnth-order error derivative. The optimal control problem could be transformed into a nonlinear constraint optimization (NLCO) problem via Lyapunov theorems. Therefore, optimal PID controller could be obtained by solving NLCO problem through interior method or other optimization methods. The proposed method can be applied for different processes, and optimal PID controllers under various control weight matrices andɛ-Routh stability are presented for different processes. Control weight matrix andɛ-Routh stability’s effects on system performances are studied, and different tuning methods’ system performances are also discussed.ɛ-Routh stability’s effects on disturbance rejection ability are investigated, and different tuning methods’ disturbances rejection ability is studied. To further illustrate the proposed method, experimental results of coupled water tank system (CWTS) under different set points are presented. Both simulation results and experiment results show the effectiveness and usefulness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document