scholarly journals A Churn Prediction Model Using Random Forest: Analysis of Machine Learning Techniques for Churn Prediction and Factor Identification in Telecom Sector

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 60134-60149 ◽  
Author(s):  
Irfan Ullah ◽  
Basit Raza ◽  
Ahmad Kamran Malik ◽  
Muhammad Imran ◽  
Saif Ul Islam ◽  
...  
2018 ◽  
Vol 7 (3.34) ◽  
pp. 291
Author(s):  
M Malleswari ◽  
R.J Manira ◽  
Praveen Kumar ◽  
Murugan .

 Big data analytics has been the focus for large scale data processing. Machine learning and Big data has great future in prediction. Churn prediction is one of the sub domain of big data. Preventing customer attrition especially in telecom is the advantage of churn prediction.  Churn prediction is a day-to-day affair involving millions. So a solution to prevent customer attrition can save a lot. This paper propose to do comparison of three machine learning techniques Decision tree algorithm, Random Forest algorithm and Gradient Boosted tree algorithm using Apache Spark. Apache Spark is a data processing engine used in big data which provides in-memory processing so that the processing speed is higher. The analysis is made by extracting the features of the data set and training the model. Scala is a programming language that combines both object oriented and functional programming and so a powerful programming language. The analysis is implemented using Apache Spark and modelling is done using scala ML. The accuracy of Decision tree model came out as 86%, Random Forest model is 87% and Gradient Boosted tree is 85%. 


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4512
Author(s):  
Junqi Guo ◽  
Lan Yang ◽  
Anton Umek ◽  
Rongfang Bie ◽  
Sašo Tomažič ◽  
...  

In the military, police, security companies, and shooting sports, precision shooting training is of the outmost importance. In order to achieve high shooting accuracy, a lot of training is needed. As a result, trainees use a large number of cartridges and a considerable amount of time of professional trainers, which can cost a lot. Our motivation is to reduce costs and shorten training time by introducing an augmented biofeedback system based on machine learning techniques. We are designing a system that can detect and provide feedback on three types of errors that regularly occur during a precision shooting practice: excessive hand movement error, aiming error and triggering error. The system is designed to provide concurrent feedback on the hand movement error and terminal feedback on the other two errors. Machine learning techniques are used innovatively to identify hand movement errors; the other two errors are identified by the threshold approach. To correct the excessive hand movement error, a precision shot accuracy prediction model based on Random Forest has proven to be the most suitable. The experimental results show that: (1) the proposed Random Forest (RF) model achieves the prediction accuracy of 91.27%, higher than any of the other reference models, and (2) hand movement is strongly related to the accuracy of precision shooting. Appropriate use of the proposed augmented biofeedback system will result in a lower number of rounds used and shorten the precision shooting training process.


Author(s):  
Tania Camila Niño-Sandoval ◽  
Robinson Andrés Jaque ◽  
Fabio A. González ◽  
Belmiro C. E. Vasconcelos

Webology ◽  
2021 ◽  
Vol 18 (Special Issue 01) ◽  
pp. 183-195
Author(s):  
Thingbaijam Lenin ◽  
N. Chandrasekaran

Student’s academic performance is one of the most important parameters for evaluating the standard of any institute. It has become a paramount importance for any institute to identify the student at risk of underperforming or failing or even drop out from the course. Machine Learning techniques may be used to develop a model for predicting student’s performance as early as at the time of admission. The task however is challenging as the educational data required to explore for modelling are usually imbalanced. We explore ensemble machine learning techniques namely bagging algorithm like random forest (rf) and boosting algorithms like adaptive boosting (adaboost), stochastic gradient boosting (gbm), extreme gradient boosting (xgbTree) in an attempt to develop a model for predicting the student’s performance of a private university at Meghalaya using three categories of data namely demographic, prior academic record, personality. The collected data are found to be highly imbalanced and also consists of missing values. We employ k-nearest neighbor (knn) data imputation technique to tackle the missing values. The models are developed on the imputed data with 10 fold cross validation technique and are evaluated using precision, specificity, recall, kappa metrics. As the data are imbalanced, we avoid using accuracy as the metrics of evaluating the model and instead use balanced accuracy and F-score. We compare the ensemble technique with single classifier C4.5. The best result is provided by random forest and adaboost with F-score of 66.67%, balanced accuracy of 75%, and accuracy of 96.94%.


Author(s):  
Ramesh Ponnala ◽  
K. Sai Sowjanya

Prediction of Cardiovascular ailment is an important task inside the vicinity of clinical facts evaluation. Machine learning knowledge of has been proven to be effective in helping in making selections and predicting from the huge amount of facts produced by using the healthcare enterprise. on this paper, we advocate a unique technique that pursuits via finding good sized functions by means of applying ML strategies ensuing in improving the accuracy inside the prediction of heart ailment. The severity of the heart disease is classified primarily based on diverse methods like KNN, choice timber and so on. The prediction version is added with special combos of capabilities and several known classification techniques. We produce a stronger performance level with an accuracy level of a 100% through the prediction version for heart ailment with the Hybrid Random forest area with a linear model (HRFLM).


Sign in / Sign up

Export Citation Format

Share Document