scholarly journals Broadcast Based Code Dissemination Scheme for Duty Cycle Based Wireless Sensor Networks

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 105258-105286 ◽  
Author(s):  
Ting Shu ◽  
Wei Liu ◽  
Tian Wang ◽  
Qingyong Deng ◽  
Ming Zhao ◽  
...  
Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3516 ◽  
Author(s):  
Wei Qi ◽  
Wei Liu ◽  
Xuxun Liu ◽  
Anfeng Liu ◽  
Tian Wang ◽  
...  

Software defined networks brings greater flexibility to networks and therefore generates new vitality. Thanks to the ability to update soft code to sensor nodes, wireless sensor networks (WSNs) brings profound changes to Internet of Things. However, it is a challenging issue to minimize delay and transmission times and maintain long lifetime when broadcasting data packets in high loss ratio and low duty cycle WSNs. Although there have been some research concerning code dissemination, those schemes can only achieve a tradeoff between different performances, instead of optimizing all these important performances at the same time. Therefore, in this paper we propose a new strategy that can reduce delay and transmission times simultaneously. In traditional method, the broadcasting nature of wireless communication is not sufficiently utilized. By allowing sons of the same parent node to share awake slots, the broadcasting nature is well exploited and delay is thus reduced as well as transmission times with lifetime not affected. And, as we discover there is energy surplus when collecting data in area away from sink, we further improve this strategy so that all the performances can be further bettered. Compared with traditional method, the methods we design (IFAS, BTAS and AAPS) can respectively reduce delay by 20.56%, 31.59%, 55.16% and reduce transmission times by 29.53%, 43.93%, 42.04%, while not reducing lifetime.


Author(s):  
Yousef S. Kavian ◽  
Hadi Rasouli

The energy efficiency is a main challenging issue for employing wireless sensor networks (WSNs) in extreme environments where the media access progress consumes the main part of network energy. The IEEE 802.15.4 is adopted in low complexity, ultra-low power and low data rate wireless sensor applications where the energy consumption of nodes should be managed carefully in harsh and inaccessible environments. The beacon-enabled mode of the IEEE 802.15.4 provides a power management scheme. When the network traffic is variable, this mode does not work as well and the coordinator is not capable for estimating the network traffic and adjusting proper duty cycle dynamically. In this chapter an approach for estimating network traffic in star topology is proposed to overcome this issue where the coordinator could estimate the network traffic and dynamically adjusts duty cycle proportion to the variation of network traffic. The simulation results demonstrate the superiority of proposed approach for improving the energy consumption, throughput and delay in comparison with the IEEE 802.15.4 under different traffic conditions.


Sign in / Sign up

Export Citation Format

Share Document