curve tracing
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 0)

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7650
Author(s):  
Isaías González ◽  
José María Portalo ◽  
Antonio José Calderón

Photovoltaic (PV) energy is a renewable energy resource which is being widely integrated in intelligent power grids, smart grids, and microgrids. To characterize and monitor the behavior of PV modules, current-voltage (I-V) curves are essential. In this regard, Internet of Things (IoT) technologies provide versatile and powerful tools, constituting a modern trend in the design of sensing and data acquisition systems for I-V curve tracing. This paper presents a novel I-V curve tracer based on IoT open-source hardware and software. Namely, a Raspberry Pi microcomputer composes the hardware level, whilst the applied software comprises mariaDB, Python, and Grafana. All the tasks required for curve tracing are automated: load sweep, data acquisition, data storage, communications, and real-time visualization. Modern and legacy communication protocols are handled for seamless data exchange with a programmable logic controller and a programmable load. The development of the system is expounded, and experimental results are reported to prove the suitability and validity of the proposal. In particular, I-V curve tracing of a monocrystalline PV generator under real operating conditions is successfully conducted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alyssa Unell ◽  
Zachary M. Eisenstat ◽  
Ainsley Braun ◽  
Abhinav Gandhi ◽  
Sharon Gilad-Gutnick ◽  
...  

AbstractTowards the larger goal of understanding factors relevant for improving visuo-motor control, we investigated the role of visual feedback for modulating the effectiveness of a simple hand-eye training protocol. The regimen comprised a series of curve tracing tasks undertaken over a period of one week by neurologically healthy individuals with their non-dominant hands. Our three subject groups differed in the training they experienced: those who received ‘Persistent’ visual-feedback by seeing their hand and trace evolve in real-time superimposed upon the reference patterns, those who received ‘Non-Persistent’ visual-feedback seeing their hand movement but not the emerging trace, and a ‘Control’ group that underwent no training. Improvements in performance were evaluated along two dimensions—accuracy and steadiness, to assess visuo-motor and motor skills, respectively. We found that persistent feedback leads to a significantly greater improvement in accuracy than non-persistent feedback. Steadiness, on the other hand, benefits from training irrespective of the persistence of feedback. Our results not only demonstrate the feasibility of rapid visuo-motor learning in adulthood, but more specifically, the influence of visual veridicality and a critical role for dynamically emergent visual information.


2021 ◽  
Vol 1878 (1) ◽  
pp. 012016
Author(s):  
R Ayop ◽  
C W Tan ◽  
S N Syed Nasir ◽  
N M Nordin ◽  
M S A Mahmud

2021 ◽  
Vol 13 (5) ◽  
pp. 961
Author(s):  
Srinidhi Bashyam ◽  
Sruti Das Choudhury ◽  
Ashok Samal ◽  
Tala Awada

In this paper, we define a new problem domain, called visual growth tracking, to track different parts of an object that grow non-uniformly over space and time for application in image-based plant phenotyping. The paper introduces a novel method to reliably detect and track individual leaves of a maize plant based on a graph theoretic approach for automated leaf stage monitoring. The method has four phases: optimal view selection, plant architecture determination, leaf tracking, and generation of a leaf status report. The method accepts an image sequence of a plant as the input and automatically generates a leaf status report containing the phenotypes, which are crucial in the understanding of a plant’s growth, i.e., the emergence timing of each leaf, total number of leaves present at any time, the day on which a particular leaf ceased to grow, and the length and relative growth rate of individual leaves. Based on experimental study, three types of leaf intersections are identified, i.e., tip-contact, tangential-contact, and crossover, which pose challenges to accurate leaf tracking in the late vegetative stage. Thus, we introduce a novel curve tracing approach based on an angular consistency check to address the challenges due to intersecting leaves for improved performance. The proposed method shows high accuracy in detecting leaves and tracking them through the vegetative stages of maize plants based on experimental evaluation on a publicly available benchmark dataset.


2021 ◽  
Vol 11 (5) ◽  
pp. 2095
Author(s):  
Yu Li ◽  
Qian Lv ◽  
Jiayue Dai ◽  
Ye Tian ◽  
Jianzhong Guo

The estimation of shear wave velocity is very important in ultrasonic shear wave elasticity imaging (SWEI). Since the stability and accuracy of ultrasonic testing equipment have been greatly improved, in order to further improve the accuracy of shear wave velocity estimation and increase the quality of shear wave elasticity maps, we propose a novel real-time curve tracing (RTCT) technique to accurately reconstruct the motion trace of shear wave fronts. Based on the curve fitting of each frame shear wave, the propagation velocity of two-dimensional shear waves can be estimated. In this paper, shear wave velocity estimation and shear wave image reconstruction are implemented for homogeneous regions and stiff spherical inclusion regions with different elasticity, respectively. The experimental result shows that the proposed shear wave velocity estimation method based on the real-time curve tracing method has advantages in accuracy and anti-noise performance. Moreover, by eliminating artifacts of shear wave videos, the velocity map acquired can restore the shape of inclusions better. The real-time curve tracing method can provide a new idea for the estimation of shear wave velocity and elastic parameters.


2021 ◽  
Author(s):  
Alyssa Unell ◽  
Zachary M. Eisenstat ◽  
Ainsley Braun ◽  
Abhinav Gandhi ◽  
Sharon Gilad-Gutnick ◽  
...  

Towards the larger goal of understanding factors relevant for improving visuo-motor control, we investigated the role of visual feedback for modulating the effectiveness of a simple hand-eye training protocol. The regimen comprised a series of curve tracing tasks undertaken over a period of one week by neurologically healthy individuals with their non-dominant hands. Our three subject groups differed in the training they experienced: those who received ‘Persistent’ visual-feedback by seeing their hand and trace evolve in real-time superimposed upon the reference patterns, those who received ‘Non-Persistent’ visual-feedback seeing their hand movement but not the emerging trace, and a ‘Control’ group that underwent no training. Improvements in performance were evaluated along two dimensions – accuracy and steadiness, to assess visuo-motor and motor skills, respectively. We found that persistent feedback leads to a significantly greater improvement in accuracy than non-persistent feedback. Steadiness, on the other hand, benefits from training irrespective of the persistence of feedback. Our results not only demonstrate the feasibility of rapid visuo-motor learning in adulthood, but more specifically, the influence of visual veridicality and a critical role for dynamically emergent visual information.


Author(s):  
Daniel Voyer ◽  
Benjamin R. MacPherson

Sign in / Sign up

Export Citation Format

Share Document