scholarly journals Morphological Attribute Profile Cube and Deep Random Forest for Small Sample Classification of Hyperspectral Image

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 117096-117108
Author(s):  
Bing Liu ◽  
Wenyue Guo ◽  
Xin Chen ◽  
Kuiliang Gao ◽  
Xibing Zuo ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5559
Author(s):  
Na Li ◽  
Ruihao Wang ◽  
Huijie Zhao ◽  
Mingcong Wang ◽  
Kewang Deng ◽  
...  

To solve the small sample size (SSS) problem in the classification of hyperspectral image, a novel classification method based on diverse density and sparse representation (NCM_DDSR) is proposed. In the proposed method, the dictionary atoms, which learned from the diverse density model, are used to solve the noise interference problems of spectral features, and an improved matching pursuit model is presented to obtain the sparse coefficients. Airborne hyperspectral data collected by the push-broom hyperspectral imager (PHI) and the airborne visible/infrared imaging spectrometer (AVIRIS) are applied to evaluate the performance of the proposed classification method. Results illuminate that the overall accuracies of the proposed model for classification of PHI and AVIRIS images are up to 91.59% and 92.83% respectively. In addition, the kappa coefficients are up to 0.897 and 0.91.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5276 ◽  
Author(s):  
Fan Feng ◽  
Shuangting Wang ◽  
Chunyang Wang ◽  
Jin Zhang

Every pixel in a hyperspectral image contains detailed spectral information in hundreds of narrow bands captured by hyperspectral sensors. Pixel-wise classification of a hyperspectral image is the cornerstone of various hyperspectral applications. Nowadays, deep learning models represented by the convolutional neural network (CNN) provides an ideal solution for feature extraction, and has made remarkable achievements in supervised hyperspectral classification. However, hyperspectral image annotation is time-consuming and laborious, and available training data is usually limited. Due to the “small-sample problem”, CNN-based hyperspectral classification is still challenging. Focused on the limited sample-based hyperspectral classification, we designed an 11-layer CNN model called R-HybridSN (Residual-HybridSN) from the perspective of network optimization. With an organic combination of 3D-2D-CNN, residual learning, and depth-separable convolutions, R-HybridSN can better learn deep hierarchical spatial–spectral features with very few training data. The performance of R-HybridSN is evaluated over three public available hyperspectral datasets on different amounts of training samples. Using only 5%, 1%, and 1% labeled data for training in Indian Pines, Salinas, and University of Pavia, respectively, the classification accuracy of R-HybridSN is 96.46%, 98.25%, 96.59%, respectively, which is far better than the contrast models.


2021 ◽  
Author(s):  
Xiaoyan Wang ◽  
Jianbin Sun ◽  
Qingsong Zhao

2014 ◽  
Vol 687-691 ◽  
pp. 1416-1419
Author(s):  
Min Zhu ◽  
Jing Xia ◽  
Mo Lei Yan ◽  
Sheng Yu Zhang ◽  
Guo Long Cai ◽  
...  

Traditional random forest algorithm is difficult to achieve very good effect for the classification of small sample data set. Because in the process of repeated random selection, selection sample is little, resulting in trees with very small degree of difference, which floods right decisions, makes bigger generalization error of the model, and the predict rate is reduced. For the sample size of sepsis cases data, this paper adopts for parameters used in random forest modeling interval division choice; divide feature interval into high correlation and uncertain correlation intervals; select data from two intervals respectively for modeling. Eventually reduce model generalization error, and improve accuracy of prediction.


Sign in / Sign up

Export Citation Format

Share Document