hyperspectral classification
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 65)

H-INDEX

16
(FIVE YEARS 7)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuli Cheng ◽  
Liejun Wang ◽  
Anyu Du

AbstractIn recent years, the hyperspectral classification algorithm based on deep learning has received widespread attention, but the existing network models have higher model complexity and require more time consumption. In order to further improve the accuracy of hyperspectral image classification and reduce model complexity, this paper proposes an asymmetric coordinate attention spectral-spatial feature fusion network (ACAS2F2N) to capture distinguishing hyperspectral features. Specifically, adaptive asymmetric iterative attention was proposed to obtain the discriminative spectral-spatial features. Different from the common feature fusion method, this feature fusion method can adapt to most skip connection tasks. In addition, there is no manual parameter setting. Coordinate attention is used to obtain accurate coordinate information and channel relationship. The strip pooling module was introduced to increase the network’s receptive field and avoid irrelevant information brought by conventional convolution kernels. The proposed algorithm is tested on the mainstream hyperspectral datasets (IP, KSC, and Botswana), experimental results show that the proposed ACAS2F2N can achieve state-of-the-art performance with lower time complexity.


2021 ◽  
Vol 13 (16) ◽  
pp. 3316
Author(s):  
Zhitao Chen ◽  
Lei Tong ◽  
Bin Qian ◽  
Jing Yu ◽  
Chuangbai Xiao

Hyperspectral classification is an important technique for remote sensing image analysis. For the current classification methods, limited training data affect the classification results. Recently, Conditional Variational Autoencoder Generative Adversarial Network (CVAEGAN) has been used to generate virtual samples to augment the training data, which could improve the classification performance. To further improve the classification performance, based on the CVAEGAN, we propose a Self-Attention-Based Conditional Variational Autoencoder Generative Adversarial Network (SACVAEGAN). Compared with CVAEGAN, we first use random latent vectors to obtain more enhanced virtual samples, which can improve the generalization performance. Then, we introduce the self-attention mechanism into our model to force the training process to pay more attention to global information, which can achieve better classification accuracy. Moreover, we explore model stability by incorporating the WGAN-GP loss function into our model to reduce the mode collapse probability. Experiments on three data sets and a comparison of the state-of-art methods show that SACVAEGAN has great advantages in accuracy compared with state-of-the-art HSI classification methods.


Author(s):  
Shuai Fang ◽  
Kun Zhang ◽  
YiBin Wang ◽  
Jing Zhang ◽  
Yang Cao ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Juan F. Ramirez Rochac ◽  
Nian Zhang ◽  
Lara A. Thompson ◽  
Tolessa Deksissa

Hyperspectral imaging is an area of active research with many applications in remote sensing, mineral exploration, and environmental monitoring. Deep learning and, in particular, convolution-based approaches are the current state-of-the-art classification models. However, in the presence of noisy hyperspectral datasets, these deep convolutional neural networks underperform. In this paper, we proposed a feature augmentation approach to increase noise resistance in imbalanced hyperspectral classification. Our method calculates context-based features, and it uses a deep convolutional neuronet (DCN). We tested our proposed approach on the Pavia datasets and compared three models, DCN, PCA + DCN, and our context-based DCN, using the original datasets and the datasets plus noise. Our experimental results show that DCN and PCA + DCN perform well on the original datasets but not on the noisy datasets. Our robust context-based DCN was able to outperform others in the presence of noise and was able to maintain a comparable classification accuracy on clean hyperspectral images.


2021 ◽  
Vol 13 (12) ◽  
pp. 2268
Author(s):  
Hang Gong ◽  
Qiuxia Li ◽  
Chunlai Li ◽  
Haishan Dai ◽  
Zhiping He ◽  
...  

Hyperspectral images are widely used for classification due to its rich spectral information along with spatial information. To process the high dimensionality and high nonlinearity of hyperspectral images, deep learning methods based on convolutional neural network (CNN) are widely used in hyperspectral classification applications. However, most CNN structures are stacked vertically in addition to using a onefold size of convolutional kernels or pooling layers, which cannot fully mine the multiscale information on the hyperspectral images. When such networks meet the practical challenge of a limited labeled hyperspectral image dataset—i.e., “small sample problem”—the classification accuracy and generalization ability would be limited. In this paper, to tackle the small sample problem, we apply the semantic segmentation function to the pixel-level hyperspectral classification due to their comparability. A lightweight, multiscale squeeze-and-excitation pyramid pooling network (MSPN) is proposed. It consists of a multiscale 3D CNN module, a squeezing and excitation module, and a pyramid pooling module with 2D CNN. Such a hybrid 2D-3D-CNN MSPN framework can learn and fuse deeper hierarchical spatial–spectral features with fewer training samples. The proposed MSPN was tested on three publicly available hyperspectral classification datasets: Indian Pine, Salinas, and Pavia University. Using 5%, 0.5%, and 0.5% training samples of the three datasets, the classification accuracies of the MSPN were 96.09%, 97%, and 96.56%, respectively. In addition, we also selected the latest dataset with higher spatial resolution, named WHU-Hi-LongKou, as the challenge object. Using only 0.1% of the training samples, we could achieve a 97.31% classification accuracy, which is far superior to the state-of-the-art hyperspectral classification methods.


2021 ◽  
Vol 13 (8) ◽  
pp. 1602
Author(s):  
Qiaoqiao Sun ◽  
Xuefeng Liu ◽  
Salah Bourennane

Deep learning models have strong abilities in learning features and they have been successfully applied in hyperspectral images (HSIs). However, the training of most deep learning models requires labeled samples and the collection of labeled samples are labor-consuming in HSI. In addition, single-level features from a single layer are usually considered, which may result in the loss of some important information. Using multiple networks to obtain multi-level features is a solution, but at the cost of longer training time and computational complexity. To solve these problems, a novel unsupervised multi-level feature extraction framework that is based on a three dimensional convolutional autoencoder (3D-CAE) is proposed in this paper. The designed 3D-CAE is stacked by fully 3D convolutional layers and 3D deconvolutional layers, which allows for the spectral-spatial information of targets to be mined simultaneously. Besides, the 3D-CAE can be trained in an unsupervised way without involving labeled samples. Moreover, the multi-level features are directly obtained from the encoded layers with different scales and resolutions, which is more efficient than using multiple networks to get them. The effectiveness of the proposed multi-level features is verified on two hyperspectral data sets. The results demonstrate that the proposed method has great promise in unsupervised feature learning and can help us to further improve the hyperspectral classification when compared with single-level features.


Sign in / Sign up

Export Citation Format

Share Document