scholarly journals Integration of Industry 4.0 Related Technologies in Construction Industry: A Framework of Cyber-Physical System

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 122908-122922 ◽  
Author(s):  
Zhijia You ◽  
Lingjun Feng
2019 ◽  
Vol 9 (14) ◽  
pp. 2819 ◽  
Author(s):  
Raihan Maskuriy ◽  
Ali Selamat ◽  
Kherun Nita Ali ◽  
Petra Maresova ◽  
Ondrej Krejcar

Technology and innovations have fueled the evolution of Industry 4.0, the fourth industrial revolution. Industry 4.0 encourages growth and development through its efficiency capacity, as documented in the literature. The growth of the construction industry is a subset of the universal set of the gross domestic product value; thus, Industry 4.0 has a spillover effect on the engineering and construction industry. In this study, we aimed to map the state of Industry 4.0 in the construction industry, to identify its key areas, and evaluate and interpret the available evidence. We focused our literature search on Web of Science and Scopus between January 2015 and May 2019. The search was dependent on the following keywords: “Industry 4.0” OR “Industrial revolution 4.0” AND TOPIC: “construction” OR “building”. From the 82 papers found, 20 full-length papers were included in this review. Results from the targeted papers were split into three clusters: technology, security, and management. With building information modelling (BIM) as the core in the cyber-physical system, the cyber-planning-physical system is able to accommodate BIM functionalities to improve construction lifecycle. This collaboration and autonomous synchronization system are able to automate the design and construction processes, and improve the ability of handling substantial amounts of heterogeneity-laden data. Industry 4.0 is expected to augment both the quality and productivity of construction and attract domestic and foreign investors.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anish Banerjee ◽  
R. Ramesh Nayaka

Purpose The purpose of this paper is to investigate building information modelling (BIM) integrated Internet of Things (IoT) architectures extensively and provide comparative evaluation of those against deciding parameters pertaining to their characteristics and subsequent applications in construction industry. Design/methodology/approach This paper identifies BIM-integrated cyber physical system frameworks, specific to project objectives, comprising of sensors working as physical assets and BIM-based virtual models acting as the cyber component , connected via wired or wireless protocols (e.g. WiFi, Zigbee, near-field communication, mobile-to-mobile, Zwave, 3 G, 4 G, long-term evolution, 5 G and low-power wide-area networks) and their potential applications in decision-making, visual management, logistics and supply chain management, smart building system management and structural performance assessment, etc. Such proposed architectures are evaluated against deciding parameters such as availability, reliability, mobility, performance, management, scalability, interoperability and security and privacy to evaluate their respective efficiencies. Findings This study finds that the underlying aim of planned IoT frameworks is to integrate systems and processes for a better information flow and to initiate shift from silo solutions to a smart ecosystem. The efficiencies of such frameworks are completely subjective to their respective project natures, objectives and requirements. Originality/value This study is unique in its nature to identify requirements of an efficient BIM-integrated IoT architecture and provide comprehensive insights about potential applications in construction industry.


Author(s):  
Oluwakemi Christiana Abikoye ◽  
Amos Orenyi Bajeh ◽  
Joseph Bamidele Awotunde ◽  
Ahmed Oloduowo Ameen ◽  
Hammed Adeleye Mojeed ◽  
...  

2020 ◽  
Vol 16 (9) ◽  
pp. 5975-5984 ◽  
Author(s):  
Alberto Villalonga ◽  
Gerardo Beruvides ◽  
Fernando Castano ◽  
Rodolfo E. Haber

Author(s):  
Swati Sisodia ◽  
Neetima Agarwal

Industry 4.0 is based on the implementation of a cyber-physical system, which includes sensors, networks, computers, offering digital enhancement and well-coordinated activities. This would create a great pool of all the workforce generations, having diverse experience, agility, and different modes of working. Millennials would add more of machine learning and Generation X and Y would be the richest source of tacit and operational knowledge. Together, they would develop solutions for catering complex and networked production and aggressive logistic management, meeting the challenges of the Industry 4.0. However, the benefits of digitization and automation can be achieved, if the different generations of workforce collaborate, cooperate, and postulate together in all the business processes. Reverse mentoring is a pristine concept and ingenious method to empower learning and encourage cross-generational connections. This chapter would elaborate on the advantage of reverse mentoring in crafting Industry 4.0 more acrobatic and quick-moving.


2015 ◽  
Vol 15 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Pieter J. Mosterman ◽  
Justyna Zander

Sign in / Sign up

Export Citation Format

Share Document