scholarly journals Industry 4.0 for the Construction Industry—How Ready Is the Industry?

2019 ◽  
Vol 9 (14) ◽  
pp. 2819 ◽  
Author(s):  
Raihan Maskuriy ◽  
Ali Selamat ◽  
Kherun Nita Ali ◽  
Petra Maresova ◽  
Ondrej Krejcar

Technology and innovations have fueled the evolution of Industry 4.0, the fourth industrial revolution. Industry 4.0 encourages growth and development through its efficiency capacity, as documented in the literature. The growth of the construction industry is a subset of the universal set of the gross domestic product value; thus, Industry 4.0 has a spillover effect on the engineering and construction industry. In this study, we aimed to map the state of Industry 4.0 in the construction industry, to identify its key areas, and evaluate and interpret the available evidence. We focused our literature search on Web of Science and Scopus between January 2015 and May 2019. The search was dependent on the following keywords: “Industry 4.0” OR “Industrial revolution 4.0” AND TOPIC: “construction” OR “building”. From the 82 papers found, 20 full-length papers were included in this review. Results from the targeted papers were split into three clusters: technology, security, and management. With building information modelling (BIM) as the core in the cyber-physical system, the cyber-planning-physical system is able to accommodate BIM functionalities to improve construction lifecycle. This collaboration and autonomous synchronization system are able to automate the design and construction processes, and improve the ability of handling substantial amounts of heterogeneity-laden data. Industry 4.0 is expected to augment both the quality and productivity of construction and attract domestic and foreign investors.

2017 ◽  
Vol 02 (03) ◽  
pp. 1750014 ◽  
Author(s):  
Yang Lu

Cyber Physical System (CPS) has provided an outstanding foundation to build advanced industrial systems and applications by integrating innovative functionalities through Internet of Things (IoT) and Web of Things (WoB) to enable connection of the operations of the physical reality with computing and communication infrastructures. A wide range of industrial CPS-based applications have been developed and deployed in Industry 4.0. In order to understand the development of CPS in Industry 4.0, this paper reviews the current research of CPS, key enabling technologies, major CPS applications in industries, and identifies research trends and challenges. A main contribution of this review paper is that it summarizes the current state-of-the-art CPS in Industry 4.0 from Web of Science (WoS) database (including 595 articles) and proposes a potential framework of CPS systematically.


2020 ◽  
Vol 7 (1.) ◽  
Author(s):  
ROHIT SINGH CHAUHAN

The 21st century is a century of Robotics and thus the appearance of robots in the industries made the “Industrial Revolution 4.0” in which we can control and analyse the system using HMI’s or wirelessly over network and it’s a great example of industry 4.0 component. Nowadays robots are very important part of industry’s processing unit as they have the tendency to work 24*7 thus increases the efficiency of processing and production unit.  In our project a depth sensor (Microsoft’s Xbox Kinect) is mounted on a mobile robot whose main task is to map our Cyber Physical System Lab in 3-Dimensional which uses a ROS OS software installed on linux machine.  The robot will use a Simultaneous localization and mapping (SLAM) process to map an environment while currently generating an estimate for the location of the Robot.


Economies ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 68 ◽  
Author(s):  
Maskuriy ◽  
Selamat ◽  
Maresova ◽  
Krejcar ◽  
Olalekan

Technology and innovations have fueled the evolution of the fourth industrial revolution (Industry 4.0). Industry 4.0 spurs growth and development through its efficiency capacity, as documented in the literature. The growth of the construction industry is a subset of the universal set of the value of gross domestic product, and thus, industry 4.0 has a spillover effect on the engineering and construction industry. The aim of this paper is to map the state of Industry 4.0 in the construction industry from the point of view of manarial activities, such as investment management, project preparation, and an overall approach to the management of related activities. This study employed scoping review techniques to dissect the status quo for Industry 4.0 and the construction industry. The empirical results from the systematic and scoping review methods for the ten sampled publications revealed that information and communication technology (ICT)—Industry 4.0—has a significant positive impact on the growth of the construction industry. Therefore, construction practitioners should partner more with researchers in the ICT industry to enhance the automation of work processes and managerial activities in the engineering and construction industry.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anish Banerjee ◽  
R. Ramesh Nayaka

Purpose The purpose of this paper is to investigate building information modelling (BIM) integrated Internet of Things (IoT) architectures extensively and provide comparative evaluation of those against deciding parameters pertaining to their characteristics and subsequent applications in construction industry. Design/methodology/approach This paper identifies BIM-integrated cyber physical system frameworks, specific to project objectives, comprising of sensors working as physical assets and BIM-based virtual models acting as the cyber component , connected via wired or wireless protocols (e.g. WiFi, Zigbee, near-field communication, mobile-to-mobile, Zwave, 3 G, 4 G, long-term evolution, 5 G and low-power wide-area networks) and their potential applications in decision-making, visual management, logistics and supply chain management, smart building system management and structural performance assessment, etc. Such proposed architectures are evaluated against deciding parameters such as availability, reliability, mobility, performance, management, scalability, interoperability and security and privacy to evaluate their respective efficiencies. Findings This study finds that the underlying aim of planned IoT frameworks is to integrate systems and processes for a better information flow and to initiate shift from silo solutions to a smart ecosystem. The efficiencies of such frameworks are completely subjective to their respective project natures, objectives and requirements. Originality/value This study is unique in its nature to identify requirements of an efficient BIM-integrated IoT architecture and provide comprehensive insights about potential applications in construction industry.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Apeesada Sompolgrunk ◽  
Saeed Banihashemi ◽  
Saeed Reza Mohandes

Purpose The purpose of this study is to identify and analyse the key measurable returning factors, value drivers and strategic benefits associated with building information modelling (BIM) return on investment (ROI). The findings of this study provide researchers and practitioners with up-to-date information in formulating appropriate strategies to quantify the monetary value of BIM. The suggested research agenda provided would also advance what is presently a limited body of knowledge relating to the evaluation of BIM ROI. Design/methodology/approach To fill the identified gap, this study develops a comprehensive systematic review of mainstream studies on factors affecting BIM ROI published from 2000 to 2020. A total of 23 academic records from different sources such as journals, conference proceedings, dissertation and PhD theses were identified and thoroughly reviewed. Findings The reported BIM ROI ranged greatly from −83.3% to 39,900%. A total of 5 returning factors, namely, schedule reduction and compliance, productivity improvement, request for information reduction, rework reduction and change orders reduction were identified as the most commonly reported factors that influence BIM ROI. Four quantification techniques including general assumptions-based theoretical model, perceived BIM ROI based on survey, factors affecting BIM ROI with no reported ROI and quantified BIM ROI based on a case study were observed and pointed out in the review, together with their limitations. Finally, three major gaps were raised as the lack of consideration on the likelihood of BIM assisting in a construction project, intangible returning factors influencing BIM-based projects and industry standards in benchmarking BIM ROI. Practical implications The outcomes of this study would assist practitioners by providing the current evaluation techniques that address the limitations with BIM investment and present issues relating to the economic evaluation of BIM in the construction industry. It is also expected that presenting a deeper and wider perspective of the research work performed until now will direct a more focussed approach on productivity improvement efforts in the construction industry. Originality/value This study identifies and analyses the key measurable returning factors, value drivers and strategic benefits associated with BIM ROI on an industry scale rather than a particular organisation or a project scale.


Sign in / Sign up

Export Citation Format

Share Document