scholarly journals Model Predictive Current Control for Fault-Tolerant Bidirectional Voltage Source Converter With Open Circuit Fault and Unbalanced Grid Voltage

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 154966-154974
Author(s):  
Shiyang Hu ◽  
Guorong Liu ◽  
Nan Jin ◽  
Leilei Guo
2018 ◽  
Vol 27 (10) ◽  
pp. 1850153 ◽  
Author(s):  
Bilel Touaiti ◽  
Hechmi Ben Azza ◽  
Mongi Moujahed ◽  
Mohamed Jemli

This paper presents a fault-tolerant Voltage Source Converter (VSC) for Field Oriented Control (FOC) of a stand-alone Doubly Fed Induction Generator (DFIG) connected to a DC load. In the proposed topology, the stator of the DFIG is connected to a DC load through a diode rectifier, while the rotor is connected to the DC load through a VSC. This topology allows the integration of DFIG in the hybrid system with other sources of production and storage, such as photovoltaic system, connected to the same DC bus. The fault-tolerant VSC consists in incorporating a fourth leg to replace the faulted leg. A fault detection scheme for switch device open-circuit faults is proposed in this study. The novelty of this method consists in analyzing the rotor currents within normal and faulty operating modes. Simulation results are presented for a 3.7[Formula: see text]kW DFIG-DC system with single open-circuit faults that validate the methods presented in this study. The effectiveness of the proposed fault detection method has been validated experimentally by using dSpace DS1104 control board based on TMS320F240 real time Digital Signal Processor (DSP).


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2599 ◽  
Author(s):  
Weipeng Yang ◽  
Hang Zhang ◽  
Jungang Li ◽  
Aimin Zhang ◽  
Yunhong Zhou ◽  
...  

This study aims to present a novel proportional-integral-derivative-resonant law-based sliding mode current control strategy with online inductance estimator (PIDR-SMCC-OIE) for voltage source converter medium voltage direct current (VSC-MVDC) system converter stations under unbalanced grid voltage conditions. A generalized current reference calculation method, by which the ratio of the amplitude of the active power ripple to that of the reactive power ripple can be continuously controlled without current distortion is presented. A dynamic model of the current control errors in the positive sequence synchronous reference frame is developed, and a PIDR law-based sliding mode current controller is designed, where derivatives of the current references are obtained by simple algebraic operations. An OIE adopting the dynamic filtering method and gradient algorithm is proposed to further improve system robustness. In this OIE, the converter pole voltages are obtained by computation utilizing the gate signals of the switching devices and the DC bus voltage, so that no additional voltage sensors are needed. To verify effectiveness of the PIDR-SMCC-OIE strategy, simulation studies on a two-terminal VSC-MVDC system are conducted in PSCAD/EMTDC. The results show it can provide satisfactory performance over a wide range of operating conditions.


2020 ◽  
Author(s):  
Ziya Özkan ◽  
Ahmet Masum Hava

In three-phase three-wire (3P3W) voltage-source converter (VSC) systems, utilization of filter inductors with deep saturation characteristics is often advantageous due to the improved size, cost, and efficiency. However, with the use of conventional synchronous frame current control (CSCC) methods, the inductor saturation results in significant dynamic performance loss and poor steady-state current waveform quality. This paper proposes an inverse dynamic model based compensation (IDMBC) method to overcome these performance issues. Accordingly, a review of inductor saturation and core materials is performed, and the motivation on the use of saturable inductors is clarified. Then, two-phase exact modelling of the 3P3W VSC control system is obtained and the drawbacks of CSCC have been demonstrated analytically. Based on the exact modelling, the inverse system dynamic model of the nonlinear system is obtained and employed such that the nonlinear plant is converted to a fictitious linear inductor system for linear current regulators to perform satisfactorily.


Sign in / Sign up

Export Citation Format

Share Document