scholarly journals PIDR Sliding Mode Current Control with Online Inductance Estimator for VSC-MVDC System Converter Stations under Unbalanced Grid Voltage Conditions

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2599 ◽  
Author(s):  
Weipeng Yang ◽  
Hang Zhang ◽  
Jungang Li ◽  
Aimin Zhang ◽  
Yunhong Zhou ◽  
...  

This study aims to present a novel proportional-integral-derivative-resonant law-based sliding mode current control strategy with online inductance estimator (PIDR-SMCC-OIE) for voltage source converter medium voltage direct current (VSC-MVDC) system converter stations under unbalanced grid voltage conditions. A generalized current reference calculation method, by which the ratio of the amplitude of the active power ripple to that of the reactive power ripple can be continuously controlled without current distortion is presented. A dynamic model of the current control errors in the positive sequence synchronous reference frame is developed, and a PIDR law-based sliding mode current controller is designed, where derivatives of the current references are obtained by simple algebraic operations. An OIE adopting the dynamic filtering method and gradient algorithm is proposed to further improve system robustness. In this OIE, the converter pole voltages are obtained by computation utilizing the gate signals of the switching devices and the DC bus voltage, so that no additional voltage sensors are needed. To verify effectiveness of the PIDR-SMCC-OIE strategy, simulation studies on a two-terminal VSC-MVDC system are conducted in PSCAD/EMTDC. The results show it can provide satisfactory performance over a wide range of operating conditions.

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3140 ◽  
Author(s):  
Weiming Liu ◽  
Tingting Zheng ◽  
Ziwen Liu ◽  
Zhihua Fan ◽  
Yilong Kang ◽  
...  

This paper presents a power compensation strategy to suppress the double frequency power ripples of Voltage source converter high-voltage direct current (VSC-HVDC) systems under unbalanced grid voltage conditions. The mathematical control equations of the double frequency ripple power of VSC under unbalanced operating conditions are firstly derived and established, where the dynamic behaviors of the double frequency ripples in active and reactive power are regarded as being driven by current-relevant components and voltage-relevant components, respectively. Based on the equations, a power compensation control strategy of VSC-HVDC is proposed via the passivity-based control with disturbance observer to suppress both the current-relevant and voltage-relevant components in the power ripples. With this control strategy, the double frequency ripples in active and reactive power are suppressed simultaneously and system performance is significantly enhanced with the implementation of the disturbance observer in the passivity-based control. Theoretical stability analysis and simulation cases show the effectiveness and superiority of the proposed strategy.


2014 ◽  
Vol 597 ◽  
pp. 468-471
Author(s):  
Jun Li Zhang ◽  
Yu Ren Li

Under the balanced or unbalanced grid voltage, the PWM voltage source rectifiers should have many advantages such as sinusoidal input current, unity power factor, four-quadrant operation, the DC voltage stability, etc., so it can be employed in very broad application field. When there is only fundamental positive sequence current component in AC current, the voltage in DC side will remain constant, the rectifier will achieve efficient transformation of power quality. It is necessary to start from control strategies to eliminate harmful components such as the negative sequence current, to improve power quality in rectifier transformation. The mathematical model of PWM rectifier under unbalanced grid voltage was established in the synchronous rotating coordinate system in this paper. The simulation studies of rectifier under unbalanced grid voltage were conducted


2015 ◽  
Vol 740 ◽  
pp. 335-338 ◽  
Author(s):  
Shao Hua Sun ◽  
Hong Qi Ben

Control strategy under unbalanced grid voltage conditions is one of the most important issues for grid-connected inverter. Under unbalanced grid voltage conditions, the 2nd active and reactive power ripples generate, they pollute the grid. To meet the demands of IEEE Std.929-2000, this paper proposed a modified power compensation control strategy; the proposed solution is based on direct power control. To provide accurate compensating power, the power model of three-phase inverter under unbalanced grid voltage conditions is given, using the positive sequence current component and the negative sequence voltage component, the compensating powers are calculated in details. Theoretical analysis and comparative simulation verification are presented to demonstrate the effectiveness of the proposed control strategy.


Author(s):  
Matías Díaz ◽  
Roberto Cárdenas-Dobson

Purpose – The purpose of this paper is to investigate a control strategy to fulfill low-voltage ride through (LVRT) requirements in wind energy conversion system (WECS). Design/methodology/approach – This paper considers an active front-end converter of a grid connected WECS working under grid fault conditions. Two strategies based on symmetrical components are studied and proposed: the first one considers control only for positive sequence control (PSC); the second one considered a dual controller for positive and negative sequence controller (PNSC). The performance of each strategy is studied on LVRT requirements fulfillment. Findings – This paper shows presents a control strategy based on symmetrical component to keep the operation of grid-connected WECS under unsymmetrical grid fault conditions. Research limitations/implications – This work is being applied to a 2 kVA laboratory prototype. The lab prototype emulates a grid connected WECS. Originality/value – This paper validate the PNSC strategy to LVRT requirements fulfillment by experimental results obtained for a 2 kVA laboratory prototype. PNSC strategy allows constant active power delivery through grid-voltage dips. In addition, the proposed strategy is able to grid-voltage support by injection of reactive power. Additional features are incorporated to PNSC: sequence separation method using delay signal cancellation and grid frequency identification using phase locked loop.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 454 ◽  
Author(s):  
Imran Khan ◽  
Kamran Zeb ◽  
Waqar Din ◽  
Saif Islam ◽  
Muhammad Ishfaq ◽  
...  

High penetration of large capacity wind turbines into power grid has led to serious concern about its influence on the dynamic behaviors of the power system. Unbalanced grid voltage causing DC-voltage fluctuations and DC-link capacitor large harmonic current which results in degrading reliability and lifespan of capacitor used in voltage source converter. Furthermore, due to magnetic saturation in the generator and non-linear loads distorted active and reactive power delivered to the grid, violating grid code. This paper provides a detailed investigation of dynamic behavior and transient characteristics of Doubly Fed Induction Generator (DFIG) during grid faults and voltage sags. It also presents novel grid side controllers, Adaptive Proportional Integral Controller (API) and Proportional Resonant with Resonant Harmonic Compensator (PR+RHC) which eliminate the negative impact of unbalanced grid voltage on the DC-capacitor as well as achieving harmonic filtering by compensating harmonics which improve power quality. Proposed algorithm focuses on mitigation of harmonic currents and voltage fluctuation in DC-capacitor making capacitor more reliable under transient grid conditions as well as distorted active and reactive power delivered to the electric grid. MATLAB/Simulink simulation of 2 MW DFIG model with 1150 V DC-linked voltage has been considered for validating the effectiveness of proposed control algorithms. The proposed controllers performance authenticates robust, ripples free, and fault-tolerant capability. In addition, performance indices and Total Harmonic Distortions (THD) are also calculated to verify the robustness of the designed controller.


Author(s):  
Akram Qashou ◽  
Sufian Yousef ◽  
Abdallah A. Smadi ◽  
Amani A. AlOmari

AbstractThe purpose of this paper is to describe the design of a Hybrid Series Active Power Filter (HSeAPF) system to improve the quality of power on three-phase power distribution grids. The system controls are comprise of Pulse Width Modulation (PWM) based on the Synchronous Reference Frame (SRF) theory, and supported by Phase Locked Loop (PLL) for generating the switching pulses to control a Voltage Source Converter (VSC). The DC link voltage is controlled by Non-Linear Sliding Mode Control (SMC) for faster response and to ensure that it is maintained at a constant value. When this voltage is compared with Proportional Integral (PI), then the improvements made can be shown. The function of HSeAPF control is to eliminate voltage fluctuations, voltage swell/sag, and prevent voltage/current harmonics are produced by both non-linear loads and small inverters connected to the distribution network. A digital Phase Locked Loop that generates frequencies and an oscillating phase-locked output signal controls the voltage. The results from the simulation indicate that the HSeAPF can effectively suppress the dynamic and harmonic reactive power compensation system. Also, the distribution network has a low Total Harmonic Distortion (< 5%), demonstrating that the designed system is efficient, which is an essential requirement when it comes to the IEEE-519 and IEC 61,000–3-6 standards.


2021 ◽  
Vol 22 (1) ◽  
pp. 113-127
Author(s):  
Mulualem Tesfaye ◽  
Baseem Khan ◽  
Om Prakash Mahela ◽  
Hassan Haes Alhelou ◽  
Neeraj Gupta ◽  
...  

Abstract Generation of renewable energy sources and their interfacing to the main system has turn out to be most fascinating challenge. Renewable energy generation requires stable and reliable incorporation of energy to the low or medium voltage networks. This paper presents the microgrid modeling as an alternative and feasible power supply for Institute of Technology, Hawassa University, Ethiopia. This microgrid consists of a 60 kW photo voltaic (PV) and a 20 kW wind turbine (WT) system; that is linked to the electrical distribution system of the campus by a 3-phase pulse width modulation scheme based voltage source inverters (VSI) and supplying power to the university buildings. The main challenge in this work is related to the interconnection of microgrid with utility grid, using 3-phase VSI controller. The PV and WT of the microgrid are controlled in active and reactive power (PQ) control mode during grid connected operation and in voltage/frequency (V/F) control mode, when the microgrid is switched to the stand-alone operation. To demonstrate the feasibility of proposed microgrid model, MATLAB/Simulink software has been employed. The performance of fully functioning microgrid is analyzed and simulated for a number of operating conditions. Simulation results supported the usefulness of developed microgrid in both mode of operation.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1365
Author(s):  
Mukul Chankaya ◽  
Ikhlaq Hussain ◽  
Aijaz Ahmad ◽  
Irfan Khan ◽  
S.M. Muyeen

This paper presents Nyström minimum kernel risk-sensitive loss (NysMKRSL) based control of a three-phase four-wire grid-tied dual-stage PV-hybrid energy storage system, under varying conditions such as irradiation variation, unbalanced load, and abnormal grid voltage. The Voltage Source Converter (VSC) control enables the system to perform multifunctional operations such as reactive power compensation, load balancing, power balancing, and harmonics elimination while maintaining Unity Power Factor (UPF). The proposed VSC control delivers more accurate weights with fewer oscillations, hence reducing overall losses and providing better stability to the system. The seamless control with the Hybrid Energy Storage System (HESS) facilitates the system’s grid-tied and isolated operation. The HESS includes the battery, fuel cell, and ultra-capacitor to accomplish the peak shaving, managing the disturbances of sudden and prolonged nature occurring due to load unbalancing and abnormal grid voltage. The DC link voltage is regulated by tuning the PI controller gains utilizing the Salp Swarm Optimization (SSO) algorithm to stabilize the system with minimum deviation from the reference voltage, during various simulated dynamic conditions. The optimized DC bus control generates the accurate loss component of current, which further enhances the performance of the proposed VSC control. The presented system was simulated in the MATLAB 2016a environment and performed satisfactorily as per IEEE 519 standards.


Sign in / Sign up

Export Citation Format

Share Document