scholarly journals Learning to Recognize Thoracic Disease in Chest X-Rays With Knowledge-Guided Deep Zoom Neural Networks

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 159790-159805
Author(s):  
Kun Wang ◽  
Xiaohong Zhang ◽  
Sheng Huang ◽  
Feiyu Chen ◽  
Xiangbo Zhang ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Wong ◽  
Z. Q. Lin ◽  
L. Wang ◽  
A. G. Chung ◽  
B. Shen ◽  
...  

AbstractA critical step in effective care and treatment planning for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause for the coronavirus disease 2019 (COVID-19) pandemic, is the assessment of the severity of disease progression. Chest x-rays (CXRs) are often used to assess SARS-CoV-2 severity, with two important assessment metrics being extent of lung involvement and degree of opacity. In this proof-of-concept study, we assess the feasibility of computer-aided scoring of CXRs of SARS-CoV-2 lung disease severity using a deep learning system. Data consisted of 396 CXRs from SARS-CoV-2 positive patient cases. Geographic extent and opacity extent were scored by two board-certified expert chest radiologists (with 20+ years of experience) and a 2nd-year radiology resident. The deep neural networks used in this study, which we name COVID-Net S, are based on a COVID-Net network architecture. 100 versions of the network were independently learned (50 to perform geographic extent scoring and 50 to perform opacity extent scoring) using random subsets of CXRs from the study, and we evaluated the networks using stratified Monte Carlo cross-validation experiments. The COVID-Net S deep neural networks yielded R$$^2$$ 2 of $$0.664 \pm 0.032$$ 0.664 ± 0.032 and $$0.635 \pm 0.044$$ 0.635 ± 0.044 between predicted scores and radiologist scores for geographic extent and opacity extent, respectively, in stratified Monte Carlo cross-validation experiments. The best performing COVID-Net S networks achieved R$$^2$$ 2 of 0.739 and 0.741 between predicted scores and radiologist scores for geographic extent and opacity extent, respectively. The results are promising and suggest that the use of deep neural networks on CXRs could be an effective tool for computer-aided assessment of SARS-CoV-2 lung disease severity, although additional studies are needed before adoption for routine clinical use.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Kaoutar Ben Ahmed ◽  
Gregory M. Goldgof ◽  
Rahul Paul ◽  
Dmitry B. Goldgof ◽  
Lawrence O. Hall

2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Rosalia Leonardi ◽  
Daniela Giordano ◽  
Francesco Maiorana

Several efforts have been made to completely automate cephalometric analysis by automatic landmark search. However, accuracy obtained was worse than manual identification in every study. The analogue-to-digital conversion of X-ray has been claimed to be the main problem. Therefore the aim of this investigation was to evaluate the accuracy of the Cellular Neural Networks approach for automatic location of cephalometric landmarks on softcopy of direct digital cephalometric X-rays. Forty-one, direct-digital lateral cephalometric radiographs were obtained by a Siemens Orthophos DS Ceph and were used in this study and 10 landmarks (N, A Point, Ba, Po, Pt, B Point, Pg, PM, UIE, LIE) were the object of automatic landmark identification. The mean errors and standard deviations from the best estimate of cephalometric points were calculated for each landmark. Differences in the mean errors of automatic and manual landmarking were compared with a 1-way analysis of variance. The analyses indicated that the differences were very small, and they were found at most within 0.59 mm. Furthermore, only few of these differences were statistically significant, but differences were so small to be in most instances clinically meaningless. Therefore the use of X-ray files with respect to scanned X-ray improved landmark accuracy of automatic detection. Investigations on softcopy of digital cephalometric X-rays, to search more landmarks in order to enable a complete automatic cephalometric analysis, are strongly encouraged.


Author(s):  
Shashwat Sanket ◽  
M. Vergin Raja Sarobin ◽  
L. Jani Anbarasi ◽  
Jayraj Thakor ◽  
Urmila Singh ◽  
...  

Author(s):  
Sarah Badr AlSumairi ◽  
Mohamed Maher Ben Ismail

Pneumonia is an infectious disease of the lungs. About one third to one half of pneumonia cases are caused by bacteria. Early diagnosis is a critical factor for a successful treatment process. Typically, the disease can be diagnosed by a radiologist using chest X-ray images. In fact, chest X-rays are currently the best available method for diagnosing pneumonia. However, the recognition of pneumonia symptoms is a challenging task that relies on the availability of expert radiologists. Such “human” diagnosis can be inaccurate and subjective due to lack of clarity and erroneous decision. Moreover, the error can increase more if the physician is requested to analyze tens of X-rays within a short period of time. Therefore, Computer-Aided Diagnosis (CAD) systems were introduced to support and assist physicians and make their efforts more productive. In this paper, we investigate, design, implement and assess customized Convolutional Neural Networks to overcome the image-based Pneumonia classification problem. Namely, ResNet-50 and DenseNet-161 models were inherited to design customized deep network architecture and improve the overall pneumonia classification accuracy. Moreover, data augmentation was deployed and associated with standard datasets to assess the proposed models. Besides, standard performance measures were used to validate and evaluate the proposed system.


2021 ◽  
Vol 7 ◽  
pp. e495
Author(s):  
Saleh Albahli ◽  
Hafiz Tayyab Rauf ◽  
Abdulelah Algosaibi ◽  
Valentina Emilia Balas

Artificial intelligence (AI) has played a significant role in image analysis and feature extraction, applied to detect and diagnose a wide range of chest-related diseases. Although several researchers have used current state-of-the-art approaches and have produced impressive chest-related clinical outcomes, specific techniques may not contribute many advantages if one type of disease is detected without the rest being identified. Those who tried to identify multiple chest-related diseases were ineffective due to insufficient data and the available data not being balanced. This research provides a significant contribution to the healthcare industry and the research community by proposing a synthetic data augmentation in three deep Convolutional Neural Networks (CNNs) architectures for the detection of 14 chest-related diseases. The employed models are DenseNet121, InceptionResNetV2, and ResNet152V2; after training and validation, an average ROC-AUC score of 0.80 was obtained competitive as compared to the previous models that were trained for multi-class classification to detect anomalies in x-ray images. This research illustrates how the proposed model practices state-of-the-art deep neural networks to classify 14 chest-related diseases with better accuracy.


2021 ◽  
Vol 18 (2) ◽  
pp. 4-15
Author(s):  
Luan Oliveira Silva ◽  
◽  
Leandro dos Santos Araújo ◽  
Victor Ferreira Souza ◽  
Raimundo Matos Barros Neto ◽  
...  

Pneumonia is one of the most common medical problems in clinical practice and is the leading fatal infectious disease worldwide. According to the World Health Organization, pneumonia kills about 2 million children under the age of 5 and is constantly estimated to be the leading cause of infant mortality, killing more children than AIDS, malaria, and measles combined. A key element in the diagnosis is radiographic data, as chest x-rays are routinely obtained as a standard of care and can aid to differentiate the types of pneumonia. However, a rapid radiological interpretation of images is not always available, particularly in places with few resources, where childhood pneumonia has the highest incidence and mortality rates. As an alternative, the application of deep learning techniques for the classification of medical images has grown considerably in recent years. This study presents five implementations of convolutional neural networks (CNNs): ResNet50, VGG-16, InceptionV3, InceptionResNetV2, and ResNeXt50. To support the diagnosis of the disease, these CNNs were applied to solve the classification problem of medical radiographs from people with pneumonia. InceptionResNetV2 obtained the best recall and precision results for the Normal and Pneumonia classes, 93.95% and 97.52% respectively. ResNeXt50 achieved the best precision and f1-score results for the Normal class (94.62% and 94.25% respectively) and the recall and f1-score results for the Pneumonia class (97.80% and 97.65%, respectively).


Sign in / Sign up

Export Citation Format

Share Document