scholarly journals Automatic Segmentation Using a Hybrid Dense Network Integrated With an 3D-Atrous Spatial Pyramid Pooling Module for Computed Tomography (CT) Imaging

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 169794-169803
Author(s):  
Abdul Qayyum ◽  
Iftikhar Ahmad ◽  
Wajid Mumtaz ◽  
Madini O. Alassafi ◽  
Rayed Alghamdi ◽  
...  
2017 ◽  
Author(s):  
◽  
D. E. Rodríguez-Obregón

A method to estimate the pulmonary fibrosis in computed tomography (CT) imaging is presented. A semi-automatic segmentation algorithm based on the Chan-Vese method was used. The proposed method shows a similar fibrosis region with respect to clinical expert. However, the results need to be validated in a bigger data base. The proposed method approximates a fibrosis percentage that allows to achieve this procedure easily in order to support its implementation in the clinical practice minimizing the clinical expert subjectivity and generating a quantitativeestimation of fibrosis region.


2017 ◽  
Author(s):  
◽  
D. E. Rodríguez-Obregón

A method to estimate the pulmonary fibrosis in computed tomography (CT) imaging is presented. A semi-automatic segmentation algorithm based on the Chan-Vese method was used. The proposed method shows a similar fibrosis region with respect to clinical expert. However, the results need to be validated in a bigger data base. The proposed method approximates a fibrosis percentage that allows to achieve this procedure easily in order to support its implementation in the clinical practice minimizing the clinical expert subjectivity and generating a quantitativeestimation of fibrosis region.


Author(s):  
Valeria Vendries ◽  
Tamas Ungi ◽  
Jordan Harry ◽  
Manuela Kunz ◽  
Jana Podlipská ◽  
...  

Abstract Purpose Osteophytes are common radiographic markers of osteoarthritis. However, they are not accurately depicted using conventional imaging, thus hampering surgical interventions that rely on pre-operative images. Studies have shown that ultrasound (US) is promising at detecting osteophytes and monitoring the progression of osteoarthritis. Furthermore, three-dimensional (3D) ultrasound reconstructions may offer a means to quantify osteophytes. The purpose of this study was to compare the accuracy of osteophyte depiction in the knee joint between 3D US and conventional computed tomography (CT). Methods Eleven human cadaveric knees were pre-screened for the presence of osteophytes. Three osteoarthritic knees were selected, and then, 3D US and CT images were obtained, segmented, and digitally reconstructed in 3D. After dissection, high-resolution structured light scanner (SLS) images of the joint surfaces were obtained. Surface matching and root mean square (RMS) error analyses of surface distances were performed to assess the accuracy of each modality in capturing osteophytes. The RMS errors were compared between 3D US, CT and SLS models. Results Average RMS error comparisons for 3D US versus SLS and CT versus SLS models were 0.87 mm ± 0.33 mm (average ± standard deviation) and 0.95 mm ± 0.32 mm, respectively. No statistical difference was found between 3D US and CT. Comparative observations of imaging modalities suggested that 3D US better depicted osteophytes with cartilage and fibrocartilage tissue characteristics compared to CT. Conclusion Using 3D US can improve the depiction of osteophytes with a cartilaginous portion compared to CT. It can also provide useful information about the presence and extent of osteophytes. Whilst algorithm improvements for automatic segmentation and registration of US are needed to provide a more robust investigation of osteophyte depiction accuracy, this investigation puts forward the potential application for 3D US in routine diagnostic evaluations and pre-operative planning of osteoarthritis.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1104
Author(s):  
Siti Raihanah Abdani ◽  
Mohd Asyraf Zulkifley ◽  
Nuraisyah Hani Zulkifley

Pterygium is an eye condition that is prevalent among workers that are frequently exposed to sunlight radiation. However, most of them are not aware of this condition, which motivates many volunteers to set up health awareness booths to give them free health screening. As a result, a screening tool that can be operated on various platforms is needed to support the automated pterygium assessment. One of the crucial functions of this assessment is to extract the infected regions, which directly correlates with the severity levels. Hence, Group-PPM-Net is proposed by integrating a spatial pyramid pooling module (PPM) and group convolution to the deep learning segmentation network. The system uses a standard mobile phone camera input, which is then fed to a modified encoder-decoder convolutional neural network, inspired by a Fully Convolutional Dense Network that consists of a total of 11 dense blocks. A PPM is integrated into the network because of its multi-scale capability, which is useful for multi-scale tissue extraction. The shape of the tissues remains relatively constant, but the size will differ according to the severity levels. Moreover, group and shuffle convolution modules are also integrated at the decoder side of Group-PPM-Net by placing them at the starting layer of each dense block. The addition of these modules allows better correlation among the filters in each group, while the shuffle process increases channel variation that the filters can learn from. The results show that the proposed method obtains mean accuracy, mean intersection over union, Hausdorff distance, and Jaccard index performances of 0.9330, 0.8640, 11.5474, and 0.7966, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Junyoung Park ◽  
Jae Sung Lee ◽  
Dongkyu Oh ◽  
Hyun Gee Ryoo ◽  
Jeong Hee Han ◽  
...  

AbstractQuantitative single-photon emission computed tomography/computed tomography (SPECT/CT) using Tc-99m pertechnetate aids in evaluating salivary gland function. However, gland segmentation and quantitation of gland uptake is challenging. We develop a salivary gland SPECT/CT with automated segmentation using a deep convolutional neural network (CNN). The protocol comprises SPECT/CT at 20 min, sialagogue stimulation, and SPECT at 40 min post-injection of Tc-99m pertechnetate (555 MBq). The 40-min SPECT was reconstructed using the 20-min CT after misregistration correction. Manual salivary gland segmentation for %injected dose (%ID) by human experts proved highly reproducible, but took 15 min per scan. An automatic salivary segmentation method was developed using a modified 3D U-Net for end-to-end learning from the human experts (n = 333). The automatic segmentation performed comparably with human experts in voxel-wise comparison (mean Dice similarity coefficient of 0.81 for parotid and 0.79 for submandibular, respectively) and gland %ID correlation (R2 = 0.93 parotid, R2 = 0.95 submandibular) with an operating time less than 1 min. The algorithm generated results that were comparable to the reference data. In conclusion, with the aid of a CNN, we developed a quantitative salivary gland SPECT/CT protocol feasible for clinical applications. The method saves analysis time and manual effort while reducing patients’ radiation exposure.


Sign in / Sign up

Export Citation Format

Share Document