scholarly journals Vision-Based Moving UAV Tracking by Another UAV on Low-Cost Hardware and a New Ground Control Station

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 194601-194611
Author(s):  
Emre Cintas ◽  
Baris Ozyer ◽  
Emrah Simsek
Author(s):  
Mlađan Jovanovic´ ◽  
Dusˇan Starcˇevic´ ◽  
Zoran Jovanovic´

Uninhabited vehicles can be used in many applications and domains, particularly in environments that humans cannot enter (e.g. deep sea) or prefer not to enter (e.g. war zones). The promise of relatively low cost, highly reliable and effective assets that are not subject to the physical, psychological or training constraints of human pilots has led to much research effort across the world. Due to technological advances and increasing investment, interest in Unmanned Aerial Vehicles (UAVs) as a practical, deployable technological component in many civil applications is rapidly increasing and becoming a reality, as are their capabilities and availability. UAV platforms also offer a unique experimental environment for developing, integrating and experimenting with many other technologies such as automated planners, knowledge representation systems, chronicle recognition systems, etc. UAV performs various kinds of missions such as mobile tactical reconnaissance, surveillance, law enforcement, search and rescue, land management, environmental monitoring, disaster management. UAV is a complex and challenging system to develop. It operates autonomously in unknown and dynamically changing environment. This requires different types of subsystems to cooperate. In order to realize all functionalities of the UAV, the software part becomes very complex real-time system expected to execute real-time tasks concurrently. This paper describes proposed software architecture for GCS (Ground Control Station) for lightweight UAV purpose-built for medium-scale reconnaissance and surveillance missions in civil area. The overall system architecture and implementation are described.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1369
Author(s):  
Hyojun Lee ◽  
Jiyoung Yoon ◽  
Min-Seong Jang ◽  
Kyung-Joon Park

To perform advanced operations with unmanned aerial vehicles (UAVs), it is crucial that components other than the existing ones such as flight controller, network devices, and ground control station (GCS) are also used. The inevitable addition of hardware and software to accomplish UAV operations may lead to security vulnerabilities through various vectors. Hence, we propose a security framework in this study to improve the security of an unmanned aerial system (UAS). The proposed framework operates in the robot operating system (ROS) and is designed to focus on several perspectives, such as overhead arising from additional security elements and security issues essential for flight missions. The UAS is operated in a nonnative and native ROS environment. The performance of the proposed framework in both environments is verified through experiments.


2021 ◽  
Vol 13 (8) ◽  
pp. 188
Author(s):  
Marianna Di Gregorio ◽  
Marco Romano ◽  
Monica Sebillo ◽  
Giuliana Vitiello ◽  
Angela Vozella

The use of Unmanned Aerial Systems, commonly called drones, is growing enormously today. Applications that can benefit from the use of fleets of drones and a related human–machine interface are emerging to ensure better performance and reliability. In particular, a fleet of drones can become a valuable tool for monitoring a wide area and transmitting relevant information to the ground control station. We present a human–machine interface for a Ground Control Station used to remotely operate a fleet of drones, in a collaborative setting, by a team of multiple operators. In such a collaborative setting, a major interface design challenge has been to maximize the Team Situation Awareness, shifting the focus from the individual operator to the entire group decision-makers. We were especially interested in testing the hypothesis that shared displays may improve the team situation awareness and hence the overall performance. The experimental study we present shows that there is no difference in performance between shared and non-shared displays. However, in trials when unexpected events occurred, teams using shared displays-maintained good performance whereas in teams using non-shared displays performance reduced. In particular, in case of unexpected situations, operators are able to safely bring more drones home, maintaining a higher level of team situational awareness.


Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 13 ◽  
Author(s):  
Margaret Kalacska ◽  
Oliver Lucanus ◽  
J. Pablo Arroyo-Mora ◽  
Étienne Laliberté ◽  
Kathryn Elmer ◽  
...  

The rapid increase of low-cost consumer-grade to enterprise-level unmanned aerial systems (UASs) has resulted in the exponential use of these systems in many applications. Structure from motion with multiview stereo (SfM-MVS) photogrammetry is now the baseline for the development of orthoimages and 3D surfaces (e.g., digital elevation models). The horizontal and vertical positional accuracies (x, y and z) of these products in general, rely heavily on the use of ground control points (GCPs). However, for many applications, the use of GCPs is not possible. Here we tested 14 UASs to assess the positional and within-model accuracy of SfM-MVS reconstructions of low-relief landscapes without GCPs ranging from consumer to enterprise-grade vertical takeoff and landing (VTOL) platforms. We found that high positional accuracy is not necessarily related to the platform cost or grade, rather the most important aspect is the use of post-processing kinetic (PPK) or real-time kinetic (RTK) solutions for geotagging the photographs. SfM-MVS products generated from UAS with onboard geotagging, regardless of grade, results in greater positional accuracies and lower within-model errors. We conclude that where repeatability and adherence to a high level of accuracy are needed, only RTK and PPK systems should be used without GCPs.


2021 ◽  
Author(s):  
Taiwo Amida

The majority of Unmanned Aerial Vehicle (UAV) accidents can be directly related to human error. For this reason, standards and guidelines focusing on human factors have been published by various organizations such as Transport Canada, FAA, EASA, NASA and military agencies. The objective of this thesis is to present a methodology for designing a Ground Control Station (GCS) using available standards and guidelines for human factors. During the design process, a detailed analysis was performed using human factors methods to ensure all requirements were met; each phase of the design follows the guidelines presented in the compiled human factors standards and guidelines. The GCS interface was developed using advanced programming techniques and commercial off-the-shelf software. Moreover, an operator workload evaluation was carried out using NASA task load index for validation of design methodology. It was found that the applied methodology not only improved the pilot workload, but also ensured that all user and stakeholders’ requirements are met.


Author(s):  
G. Forlani ◽  
F. Diotri ◽  
U. Morra di Cella ◽  
R. Roncella

Abstract. Unmanned Aerial Vehicles (UAV) are established platforms for photogrammetric surveys in remote areas. They are lightweight, easy to operate and can allow access to remote sites otherwise difficult (or impossible) to be surveyed with other techniques. Very good accuracy can be obtained also with low-cost UAV platforms as far as a reliable ground control is provided. However, placing ground control points (GCP) in these contexts is time consuming and requires accessibility that, in some cases, can be troublesome. RTK-capable UAV platforms are now available at reasonable costs and can overcome most of these problems, requiring just few (or none at all) GCP and still obtaining accurate results. The paper will present a set of experiments performed in cooperation with ARPA VdA (the Environmental Protection Agency of Valle d’Aosta region, Italy) on a test site in the Italian Alps using a Dji Phantom 4 RTK platform. Its goals are: a) compare accuracies obtainable with different calibration procedures (pre- or on-the-job/self-calibration); b) evaluate the accuracy improvements using different number of GCP when the site allows for it; and c) compare alternative positioning modes for camera projection centres determination, (Network RTK, RTK, Post Processing Kinematic and Single Point Positioning).


2016 ◽  
Vol 10 (1) ◽  
pp. 28-32
Author(s):  
Sławomir Romaniuk ◽  
Zdzisław Gosiewski ◽  
Leszek Ambroziak

Abstract In the paper implementation of a ground control station for UAV flight simulator is shown. The ground control station software is in cooperation with flight simulator, displaying various aircraft flight parameters. The software is programmed in C++ language and utilizes the windows forms for implementing graphical content. One of the main aims of the design of the application was to simplify the interface, simultaneously maintaining the functionality and the eligibility. A mission can be planned and monitored using the implemented map control supported by waypoint list.


Sign in / Sign up

Export Citation Format

Share Document