scholarly journals Asynchronous Consensus Dynamics for Group of High-Order Agents Under Switching Topologies and Time-Varying Delays

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 218676-218684
Author(s):  
Shi Li ◽  
Jianping Chen
Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 941
Author(s):  
Tianhao Sun ◽  
Huiying Liu ◽  
Yongming Yao ◽  
Tianyu Li ◽  
Zhibo Cheng

In this paper, the time-varying formation tracking problem of the general linear multi-agent system is discussed. A distributed formation tracking protocol based on Riccati inequalities with adaptive coupling weights among the follower agents and the leader agent is designed for a leader-following multi-agent system under fixed and switching topologies. The formation configuration involved in this paper is expressed as a bounded piecewise continuously differentiable vector function. The follower agents will achieve the desired formation tracking trajectory of the leader. In traditional static protocols, the coupling weights depend on the communication topology and is a constant. However, in this paper, the coupling weights are updated by the state errors among the neighboring agents. Moreover, the stability analysis of the MAS under switching topology is presented, and proves that the followers also could achieve pre-specified time-varying formation, if the communication graph is jointly connected. Two numerical simulations indicate the capabilities of the algorithms.


Author(s):  
Jianping Wang ◽  
Pengfei Li ◽  
Ziying Wu ◽  
Minghong Zhang

In this study, a non-linear time-varying dynamic model of a spur gear pair system is used to investigate the dynamic behavior of the system by means of multiple scale approach. Both time-varying stiffness, transmission error and tooth backlash clearance of the system are taken into account in the model. The mesh stiffness fluctuation is developed as high order Fourier series and tooth backlash clearance is fitted by high order polynomial function. The frequency factors of the system are investigated and the frequency-response equations at the case of internal and external excitation, parametric excitation and combined excitation are obtained. The peak value of the amplitude of the primary resonance, super and sub harmonic resonance and combination harmonic under internal, external and parametric excitation are researched. The approaches of vibration reduction are investigated. Finally an example is investigated using the presented process and the results indicate the sensitivity and correctness of the presented analysis approaches.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Yangfan Wang ◽  
Linshan Wang

This paper studies the problems of global exponential robust stability of high-order hopfield neural networks with time-varying delays. By employing a new Lyapunov-Krasovskii functional and linear matrix inequality, some criteria of global exponential robust stability for the high-order neural networks are established, which are easily verifiable and have a wider adaptive.


Sign in / Sign up

Export Citation Format

Share Document