scholarly journals Balance Stability Augmentation for Wheel-legged Biped Robot through Arm Acceleration Control

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Fahad Raza ◽  
Wei Zhu ◽  
Mitsuhiro Hayashibe
Author(s):  
Carlotta Mummolo ◽  
William Z. Peng ◽  
Carlos Gonzalez ◽  
Joo H. Kim

A novel theoretical framework for the identification of the balance stability regions of biped systems is implemented on a real robotic platform. With the proposed method, the balance stability capabilities of a biped robot are quantified by a balance stability region in the state space of center of mass (COM) position and velocity. The boundary of such a stability region provides a threshold between balanced and falling states for the robot by including all possible COM states that are balanced with respect to a specified feet/ground contact configuration. A COM state outside of the stability region boundary is the sufficient condition for a falling state, from which a change in the specified contact configuration is inevitable. By specifying various positions of the robot’s feet on the ground, the effects of different contact configurations on the robot’s balance stability capabilities are investigated. Experimental walking trajectories of the robot are analyzed in relationship with their respective stability boundaries, to study the robot balance control during various gait phases.


2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Carlotta Mummolo ◽  
William Z. Peng ◽  
Carlos Gonzalez ◽  
Joo H. Kim

A theoretical–algorithmic framework for the construction of balance stability boundaries of biped robots with multiple contacts with the environment is proposed and implemented on a robotic platform. Comprehensive and univocal definitions of the states of balance of a generic legged system are introduced with respect to the system's contact configuration. Theoretical models of joint-space and center of mass (COM)-space dynamics under multiple contacts, distribution of contact wrenches, and robotic system parameters are established for their integration into a nonlinear programing (NLP) problem. In the proposed approach, the balance stability capabilities of a biped robot are quantified by a partition of the state space of COM position and velocity. The boundary of such a partition provides a threshold between balanced and falling states of the biped robot with respect to a specified contact configuration. For a COM state to be outside of the stability boundary represents the sufficient condition for falling, from which a change in the system's contact is inevitable. Through the calculated stability boundaries, the effects of different contact configurations (single support (SS) and double support (DS) with different step lengths) on the robot's balance stability capabilities can be quantitatively evaluated. In addition, the balance characteristics of the experimental walking trajectories of the robot at various speeds are analyzed in relation to their respective stability boundaries. The proposed framework provides a contact-dependent balance stability criterion for a given system, which can be used to improve the design and control of walking robots.


2020 ◽  
Vol 17 (6) ◽  
pp. 172988142097634
Author(s):  
Huan Tran Thien ◽  
Cao Van Kien ◽  
Ho Pham Huy Anh

This article proposes a new stable biped walking pattern generator with preset step-length value, optimized by multi-objective JAYA algorithm. The biped robot is modeled as a kinetic chain of 11 links connected by 10 joints. The inverse kinematics of the biped is applied to derive the specified biped hip and feet positions. The two objectives related to the biped walking stability and the biped to follow the preset step-length magnitude have been fully investigated and Pareto optimal front of solutions has been acquired. To demonstrate the effectiveness and superiority of proposed multi-objective JAYA, the results are compared to those of MO-PSO and MO-NSGA-2 optimization approaches. The simulation and experiment results investigated over the real small-scaled biped HUBOT-4 assert that the multi-objective JAYA technique ensures an outperforming effective and stable gait planning and walking for biped with accurate preset step-length value.


2021 ◽  
Vol 11 (5) ◽  
pp. 2342
Author(s):  
Long Li ◽  
Zhongqu Xie ◽  
Xiang Luo ◽  
Juanjuan Li

Gait pattern generation has an important influence on the walking quality of biped robots. In most gait pattern generation methods, it is usually assumed that the torso keeps vertical during walking. It is very intuitive and simple. However, it may not be the most efficient. In this paper, we propose a gait pattern with torso pitch motion (TPM) during walking. We also present a gait pattern with torso keeping vertical (TKV) to study the effects of TPM on energy efficiency of biped robots. We define the cyclic gait of a five-link biped robot with several gait parameters. The gait parameters are determined by optimization. The optimization criterion is chosen to minimize the energy consumption per unit distance of the biped robot. Under this criterion, the optimal gait performances of TPM and TKV are compared over different step lengths and different gait periods. It is observed that (1) TPM saves more than 12% energy on average compared with TKV, and the main factor of energy-saving in TPM is the reduction of energy consumption of the swing knee in the double support phase and (2) the overall trend of torso motion is leaning forward in double support phase and leaning backward in single support phase, and the amplitude of the torso pitch motion increases as gait period or step length increases.


Sign in / Sign up

Export Citation Format

Share Document