End-to-end Correlation Tracking with Enhanced Multi-level Feature Fusion

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Guangen Liu ◽  
Guizhong Liu
2019 ◽  
Vol 55 (13) ◽  
pp. 742-745 ◽  
Author(s):  
Kang Yang ◽  
Huihui Song ◽  
Kaihua Zhang ◽  
Jiaqing Fan

2021 ◽  
Vol 191 ◽  
pp. 106479
Author(s):  
Qixin Sun ◽  
Xiujuan Chai ◽  
Zhikang Zeng ◽  
Guomin Zhou ◽  
Tan Sun

Author(s):  
Ying-Xiang Hu ◽  
Rui-Sheng Jia ◽  
Yong-Chao Li ◽  
Qi Zhang ◽  
Hong-Mei Sun

2018 ◽  
Vol 10 (11) ◽  
pp. 4615-4624 ◽  
Author(s):  
Shubhanshi Singhal ◽  
Vishal Passricha ◽  
Pooja Sharma ◽  
Rajesh Kumar Aggarwal

Author(s):  
Arjun Benagatte Channegowda ◽  
H N Prakash

Providing security in biometrics is the major challenging task in the current situation. A lot of research work is going on in this area. Security can be more tightened by using complex security systems, like by using more than one biometric trait for recognition. In this paper multimodal biometric models are developed to improve the recognition rate of a person. The combination of physiological and behavioral biometrics characteristics is used in this work. Fingerprint and signature biometrics characteristics are used to develop a multimodal recognition system. Histograms of oriented gradients (HOG) features are extracted from biometric traits and for these feature fusions are applied at two levels. Features of fingerprint and signatures are fused using concatenation, sum, max, min, and product rule at multilevel stages, these features are used to train deep learning neural network model. In the proposed work, multi-level feature fusion for multimodal biometrics with a deep learning classifier is used and results are analyzed by a varying number of hidden neurons and hidden layers. Experiments are carried out on SDUMLA-HMT, machine learning and data mining lab, Shandong University fingerprint datasets, and MCYT signature biometric recognition group datasets, and encouraging results were obtained.


2021 ◽  
Vol 7 (4) ◽  
pp. 117
Author(s):  
Linling Fang ◽  
Yingle Fan

<p>A biomimetic vision computing model based on multi-level feature channel optimization coding is proposed and applied to image contour detection, combining the end-to-end detection method of full convolutional neural network and the traditional contour detection method based on biological vision mechanism. Considering the effectiveness of the Gabor filter in perceiving the scale and direction of the image target, the Gabor filter is introduced to simulate the multi-level feature response on the visual path. The optimal scale and direction of the Gabor filter are obtained based on the similarity index, and they are used as the frequency separation parameter of the NSCT transform. The contour sub-image obtained by the NSCT transform is combined with the original image for feature enhancement and fusion to realize the primary contour response. The low-dimensional and low-redundancy primary contour response is used as the input sample of the network model to relieve network pressure and reduce computational complexity. A fully improved convolutional neural network model is constructed for multi-scale training, through feature encoder to feature decoder, to achieve end-to-end pixel prediction, and obtain a complete and continuous detection image of the subject contour. Using the BSDS500 atlas as the experimental sample, the average accuracy index is 0.85, which runs on the device CPU at a detection rate of 20+ FPS to achieve a good balance between training efficiency and detection effect.</p>


Sign in / Sign up

Export Citation Format

Share Document