scholarly journals Multimodal biometrics of fingerprint and signature recognition using multi-level feature fusion and deep learning techniques

Author(s):  
Arjun Benagatte Channegowda ◽  
H N Prakash

Providing security in biometrics is the major challenging task in the current situation. A lot of research work is going on in this area. Security can be more tightened by using complex security systems, like by using more than one biometric trait for recognition. In this paper multimodal biometric models are developed to improve the recognition rate of a person. The combination of physiological and behavioral biometrics characteristics is used in this work. Fingerprint and signature biometrics characteristics are used to develop a multimodal recognition system. Histograms of oriented gradients (HOG) features are extracted from biometric traits and for these feature fusions are applied at two levels. Features of fingerprint and signatures are fused using concatenation, sum, max, min, and product rule at multilevel stages, these features are used to train deep learning neural network model. In the proposed work, multi-level feature fusion for multimodal biometrics with a deep learning classifier is used and results are analyzed by a varying number of hidden neurons and hidden layers. Experiments are carried out on SDUMLA-HMT, machine learning and data mining lab, Shandong University fingerprint datasets, and MCYT signature biometric recognition group datasets, and encouraging results were obtained.

2021 ◽  
Vol 11 (11) ◽  
pp. 4758
Author(s):  
Ana Malta ◽  
Mateus Mendes ◽  
Torres Farinha

Maintenance professionals and other technical staff regularly need to learn to identify new parts in car engines and other equipment. The present work proposes a model of a task assistant based on a deep learning neural network. A YOLOv5 network is used for recognizing some of the constituent parts of an automobile. A dataset of car engine images was created and eight car parts were marked in the images. Then, the neural network was trained to detect each part. The results show that YOLOv5s is able to successfully detect the parts in real time video streams, with high accuracy, thus being useful as an aid to train professionals learning to deal with new equipment using augmented reality. The architecture of an object recognition system using augmented reality glasses is also designed.


Author(s):  
Akey Sungheetha ◽  
Rajesh Sharma R

Over the last decade, remote sensing technology has advanced dramatically, resulting in significant improvements on image quality, data volume, and application usage. These images have essential applications since they can help with quick and easy interpretation. Many standard detection algorithms fail to accurately categorize a scene from a remote sensing image recorded from the earth. A method that uses bilinear convolution neural networks to produce a lessweighted set of models those results in better visual recognition in remote sensing images using fine-grained techniques. This proposed hybrid method is utilized to extract scene feature information in two times from remote sensing images for improved recognition. In layman's terms, these features are defined as raw, and only have a single defined frame, so they will allow basic recognition from remote sensing images. This research work has proposed a double feature extraction hybrid deep learning approach to classify remotely sensed image scenes based on feature abstraction techniques. Also, the proposed algorithm is applied to feature values in order to convert them to feature vectors that have pure black and white values after many product operations. The next stage is pooling and normalization, which occurs after the CNN feature extraction process has changed. This research work has developed a novel hybrid framework method that has a better level of accuracy and recognition rate than any prior model.


2021 ◽  
Vol 2066 (1) ◽  
pp. 012009
Author(s):  
Shuqiang Du

Abstract The selection and extraction of image recognition by artificial means needs more complicated work, which is not conducive to the recognition and extraction of important features. Deep learning and neural network represent the iterative expansion of computer intelligent tech, and bring significant results to image recognition. Based on this, this paper first gives the concept and model of neural network, then studies the utilization of deep learning neural network in image recognition, and finally analyses the picture recognition system on account of in-depth learning neural network.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6256
Author(s):  
Boon Giin Lee ◽  
Teak-Wei Chong ◽  
Wan-Young Chung

Sign language was designed to allow hearing-impaired people to interact with others. Nonetheless, knowledge of sign language is uncommon in society, which leads to a communication barrier with the hearing-impaired community. Many studies of sign language recognition utilizing computer vision (CV) have been conducted worldwide to reduce such barriers. However, this approach is restricted by the visual angle and highly affected by environmental factors. In addition, CV usually involves the use of machine learning, which requires collaboration of a team of experts and utilization of high-cost hardware utilities; this increases the application cost in real-world situations. Thus, this study aims to design and implement a smart wearable American Sign Language (ASL) interpretation system using deep learning, which applies sensor fusion that “fuses” six inertial measurement units (IMUs). The IMUs are attached to all fingertips and the back of the hand to recognize sign language gestures; thus, the proposed method is not restricted by the field of view. The study reveals that this model achieves an average recognition rate of 99.81% for dynamic ASL gestures. Moreover, the proposed ASL recognition system can be further integrated with ICT and IoT technology to provide a feasible solution to assist hearing-impaired people in communicating with others and improve their quality of life.


Author(s):  
Law Kumar Singh ◽  
Munish Khanna ◽  
Shankar Thawkar ◽  
Jagadeesh Gopal

Biometrics is the science that deals with personal human physiological and behavioral characteristics such as fingerprints, handprints, iris, voice, face recognition, signature recognition, ear recognition, and gait recognition. Recognition using a single trait has several problems and multimodal biometrics system is one of the solutions. In this work, the novel and imperative biometric feature gait is fused with face and ear biometric features for authentication and to overcome problems of the unimodal biometric recognition system. The authors have also applied various normalization methods to sort out the best solution for such a challenge. The feature fusion of the proposed multimodal biometric system has been tested using Min-Max and Z-score techniques. The computed results demonstrate that Z-Score outperforms the Min-Max technique. It is deduced that the Z-score is a promising method that generates a high recognition rate of 95% and a false acceptance rate of 10%.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jian Liu ◽  
Xin Gu ◽  
Chao Shang

At present, there are more and more frauds in the financial field. The detection and prevention of financial frauds are of great significance for regulating and maintaining a reasonable financial order. Deep learning algorithms are widely used because of their high recognition rate, good robustness, and strong implementation. Therefore, in the context of e-commerce big data, this paper proposes a quantitative detection algorithm for financial fraud based on deep learning. First, the encoders are used to extract the features of the behaviour. At the same time, in order to reduce the computational complexity, the feature extraction is restricted to the space-time volume of the dense trajectory. Second, the neural network model is used to transform features into behavioural visual word representations, and feature fusion is performed using weighted correlation methods to improve feature classification capabilities. Finally, sparse reconstruction errors are used to judge and detect financial fraud. This method builds a deep neural network model with multiple hidden layers, learns the characteristic expression of the data, and fully depicts the rich internal information of the data, thereby improving the accuracy of financial fraud detection. Experimental results show that this method can effectively learn the essential characteristics of the data, and significantly improve the detection rate of fraud detection algorithms.


2021 ◽  
Vol 13 (2) ◽  
pp. 38
Author(s):  
Yao Xu ◽  
Qin Yu

Great achievements have been made in pedestrian detection through deep learning. For detectors based on deep learning, making better use of features has become the key to their detection effect. While current pedestrian detectors have made efforts in feature utilization to improve their detection performance, the feature utilization is still inadequate. To solve the problem of inadequate feature utilization, we proposed the Multi-Level Feature Fusion Module (MFFM) and its Multi-Scale Feature Fusion Unit (MFFU) sub-module, which connect feature maps of the same scale and different scales by using horizontal and vertical connections and shortcut structures. All of these connections are accompanied by weights that can be learned; thus, they can be used as adaptive multi-level and multi-scale feature fusion modules to fuse the best features. Then, we built a complete pedestrian detector, the Adaptive Feature Fusion Detector (AFFDet), which is an anchor-free one-stage pedestrian detector that can make full use of features for detection. As a result, compared with other methods, our method has better performance on the challenging Caltech Pedestrian Detection Benchmark (Caltech) and has quite competitive speed. It is the current state-of-the-art one-stage pedestrian detection method.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7941
Author(s):  
Seemab Khan ◽  
Muhammad Attique Khan ◽  
Majed Alhaisoni ◽  
Usman Tariq ◽  
Hwan-Seung Yong ◽  
...  

Human action recognition (HAR) has gained significant attention recently as it can be adopted for a smart surveillance system in Multimedia. However, HAR is a challenging task because of the variety of human actions in daily life. Various solutions based on computer vision (CV) have been proposed in the literature which did not prove to be successful due to large video sequences which need to be processed in surveillance systems. The problem exacerbates in the presence of multi-view cameras. Recently, the development of deep learning (DL)-based systems has shown significant success for HAR even for multi-view camera systems. In this research work, a DL-based design is proposed for HAR. The proposed design consists of multiple steps including feature mapping, feature fusion and feature selection. For the initial feature mapping step, two pre-trained models are considered, such as DenseNet201 and InceptionV3. Later, the extracted deep features are fused using the Serial based Extended (SbE) approach. Later on, the best features are selected using Kurtosis-controlled Weighted KNN. The selected features are classified using several supervised learning algorithms. To show the efficacy of the proposed design, we used several datasets, such as KTH, IXMAS, WVU, and Hollywood. Experimental results showed that the proposed design achieved accuracies of 99.3%, 97.4%, 99.8%, and 99.9%, respectively, on these datasets. Furthermore, the feature selection step performed better in terms of computational time compared with the state-of-the-art.


2020 ◽  
Vol 19 (6) ◽  
pp. 1726-1744 ◽  
Author(s):  
Qipei Mei ◽  
Mustafa Gül

Cracks are important signs of degradation in existing infrastructure systems. Automatic crack detection and segmentation plays a key role in developing smart infrastructure systems. However, this field has been challenging over the last decades due to irregular shape of the cracks and complex illumination conditions. This article proposes a novel deep-learning architecture for crack segmentation at pixel-level. In this architecture, one convolutional layer is densely connected to multiple other layers in a feed-forward fashion. Max pooling layers are used to reduce the dimensions of the features, and transposed convolution layers are used for multi-level feature fusion. A depth-first search–based algorithm is applied as post-processing tool to remove isolated pixels and improve the accuracy. The method is tested on two previously published data sets. It can reach 92.02%, 91.13%, and 91.58% for the first data set, and 92.17%, 91.61%, and 91.89% for the second data set for precision, recall, and F1 score, respectively. The performance of the proposed method outperforms other state-of-the-art methods. At the end of the article, the influence of feature fusion methods and transfer learning are also discussed.


Sign in / Sign up

Export Citation Format

Share Document