keypoint detection
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 65)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 26 (6) ◽  
pp. 533-539
Author(s):  
Krittachai Boonsivanon ◽  
Worawat Sa-Ngiamvibool

The new improvement keypoint description technique of image-based recognition for rotation, viewpoint and non-uniform illumination situations is presented. The technique is relatively simple based on two procedures, i.e., the keypoint detection and the keypoint description procedure. The keypoint detection procedure is based on the SIFT approach, Top-Hat filtering, morphological operations and average filtering approach. Where this keypoint detection procedure can segment the targets from uneven illumination particle images. While the keypoint description procedures are described and implemented using the Hu moment invariants. Where the central moments are being unchanged under image translations. The sensitivity, accuracy and precision rate of data sets were evaluated and compared. The data set are provided by color image database with variants uniform and non-uniform illumination, viewpoint and rotation changes. The evaluative results show that the approach is superior to the other SIFTs in terms of uniform illumination, non-uniform illumination and other situations. Additionally, the paper demonstrates the high sensitivity of 100%, high accuracy of 83.33% and high precision rate of 80.00%. Comparisons to other SIFT approaches are also included.


2021 ◽  
Vol 191 ◽  
pp. 106479
Author(s):  
Qixin Sun ◽  
Xiujuan Chai ◽  
Zhikang Zeng ◽  
Guomin Zhou ◽  
Tan Sun

2021 ◽  
Vol 13 (22) ◽  
pp. 4637
Author(s):  
Runzhi Jiao ◽  
Qingsong Wang ◽  
Tao Lai ◽  
Haifeng Huang

The dramatic undulations of a mountainous terrain will introduce large geometric distortions in each Synthetic Aperture Radar (SAR) image with different look angles, resulting in a poor registration performance. To this end, this paper proposes a multi-hypothesis topological isomorphism matching method for SAR images with large geometric distortions. The method includes the Ridge-Line Keypoint Detection (RLKD) and Multi-Hypothesis Topological Isomorphism Matching (MHTIM). Firstly, based on the analysis of the ridge structure, a ridge keypoint detection module and a keypoint similarity description method are designed, which aim to quickly produce a small number of stable matching keypoint pairs under large look angle differences and large terrain undulations. The keypoint pairs are further fed into the MHTIM module. Subsequently, the MHTIM method is proposed, which uses the stability and isomorphism of the topological structure of the keypoint set under different perspectives to generate a variety of matching hypotheses, and iteratively achieves the keypoint matching. This method uses both local and global geometric relationships between two keypoints, hence it achieving better performance compared with traditional methods. We tested our approach on both simulated and real mountain SAR images with different look angles and different elevation ranges. The experimental results demonstrate the effectiveness and stable matching performance of our approach.


Author(s):  
Yu Sun ◽  
Yaozhong Xing ◽  
Zian Zhao ◽  
Xianglong Meng ◽  
Gang Xu ◽  
...  

Abstract Purpose The present study compared manual and automated measurement of Cobb angle in idiopathic scoliosis based on deep learning keypoint detection technology. Methods A total of 181 anterior–posterior spinal X-rays were included in this study, including 165 cases of idiopathic scoliosis and 16 normal adult cases without scoliosis. We labeled all images and randomly chose 145 as the training set and 36 as the test set. Two state-of-the-art deep learning object detection models based on convolutional neural networks were used in sequence to segment each vertebra and locate the vertebral corners. Cobb angles measured from the output of the models were compared to manual measurements performed by orthopedic experts. Results The mean Cobb angle in test cases was 27.4° ± 19.2° (range 0.00–91.00°) with manual measurements and 26.4° ± 18.9° (range 0.00–88.00°) with automated measurements. The automated method needed 4.45 s on average to measure each radiograph. The intra-class correlation coefficient (ICC) for the reliability of the automated measurement of the Cobb angle was 0.994. The Pearson correlation coefficient and mean absolute error between automated positioning and expert annotation were 0.990 and 2.2° ± 2.0°, respectively. The analytical result for the Spearman rank-order correlation was 0.984 (p < 0.001). Conclusion The automated measurement results agreed with the experts’ annotation and had a high degree of reliability when the Cobb angle did not exceed 90° and could locate multiple curves in the same scoliosis case simultaneously in a short period of time. Our results need to be verified in more cases in the future.


2021 ◽  
Vol 70 (9) ◽  
pp. 1354-1361
Author(s):  
Jeongseok Jeong ◽  
Byeongjun Park ◽  
Kyoungro Yoon

2021 ◽  
Vol 8 (3) ◽  
pp. 29-36
Author(s):  
Tianjiao Dong ◽  
Yu Sun

In recent years, the modeling industry has attracted many people, causing a drastic increase in the number of modeling training classes. Modeling takes practice, and without professional training, few beginners know if they are doing it right or not. In this paper, we present a real-time 2D model walk grading app based on Mediapipe, a library for real-time, multi-person keypoint detection. After capturing 2D positions of a person's joints and skeletal wireframe from an uploaded video, our app uses a scoring formula to provide accurate scores and tailored feedback to each user for their modeling skills.


Algorithms ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 268
Author(s):  
Huoyou Li ◽  
Jianshiun Hu ◽  
Jingwen Yu ◽  
Ning Yu ◽  
Qingqiang Wu

With the application of deep convolutional neural networks, the performance of computer vision tasks has been improved to a new level. The construction of a deeper and more complex network allows the face recognition algorithm to obtain a higher accuracy, However, the disadvantages of large computation and storage costs of neural networks limit the further popularization of the algorithm. To solve this problem, we have studied the unified and efficient neural network face recognition algorithm under the condition of a single camera; we propose that the complete face recognition process consists of four tasks: face detection, in vivo detection, keypoint detection, and face verification; combining the key algorithms of these four tasks, we propose a unified network model based on a deep separable convolutional structure—UFaceNet. The model uses multisource data to carry out multitask joint training and uses the keypoint detection results to aid the learning of other tasks. It further introduces the attention mechanism through feature level clipping and alignment to ensure the accuracy of the model, using the shared convolutional layer network among tasks to reduce model calculations amount and realize network acceleration. The learning goal of multi-tasking implicitly increases the amount of training data and different data distribution, making it easier to learn the characteristics with generalization. The experimental results show that the UFaceNet model is better than other models in terms of calculation amount and number of parameters with higher efficiency, and some potential areas to be used.


Sign in / Sign up

Export Citation Format

Share Document