scholarly journals Low-Profile Wideband Unidirectional Circularly Polarized Metasurface-Based Bowtie Slot Antenna

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Cho Hilary Scott Nkimbeng ◽  
Heesu Wang ◽  
Ikmo Park
2016 ◽  
Vol 9 (3) ◽  
pp. 649-656 ◽  
Author(s):  
Neng-Wu Liu ◽  
Lei Zhu ◽  
Wai-Wa Choi

A low-profile circularly polarized (CP) slot antenna to achieve a wide axial-ratio (AR) beamwidth is proposed in this paper. The radiating patch consists of two orthogonal pairs of parallel slots etched symmetrically onto a ground plane. Firstly, our theoretical study demonstrates that the CP radiation can be satisfactorily achieved at the broadside, when the vertical and horizontal paired-slots are excited in the same amplitude with 90° phase difference. Secondly, the principle of CP radiation of the proposed antenna on an infinite ground plane is described. Through analyzing the spacing between two parallel slots, the |Eθ| and |Eφ| radiation patterns can be made approximately identical with each other over a large angle range. As such, the slot antenna achieves a wide AR beamwidth. After that, the 3 dB AR beamwidth with respect to the size of a finite ground plane is investigated to constitute a practical CP antenna on a finite ground plane. In final, the proposed CP antenna with a 1–4 probe-to-microstrip feeding network is designed and fabricated on a finite ground plane of a dielectric substrate. Measured results are shown to be in good agreement with the simulated ones about the gain, reflection coefficient, AR bandwidth, and radiation patterns. Most importantly, a wide 3 dB AR beamwidth of 126° and low-profile property with the height of 0.036λ0 are achieved.


Author(s):  
Alireza Gharaati ◽  
Mohammad Saeid Ghaffarian ◽  
Hossein Saghlatoon ◽  
Mahdi Behdani ◽  
Rashid Mirzavand

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 155048-155056
Author(s):  
Nouman Rasool ◽  
Huang Kama ◽  
Muhammad Abdul Basit ◽  
Mujeeb Abdullah

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Xiao Hong Zhang ◽  
Guo Qing Luo ◽  
Lin Xi Dong

A novel planar low-profile cavity-backed slot antenna for circularly polarized applications is presented in this paper. The low-profile substrate integrated waveguide (SIW) cavity is constructed on a single PCB substrate with two metal layers on the top and the bottom surfaces and metallized via array through the substrate. The SIW cavity is fed by a SIW transmission line. The two orthogonal degenerate cavities resonanceTM110mode are successfully stimulated and separated. The circularly polarized radiation has been generated from the crossed-slot structure whose two arms’ lengths have slight difference Its gain is higher than 5.4 dBi, the peak cross-polarization level is lower than −22 dB, and the maximum axial ratio (AR) is about −1.5 dB. Compared with the previous presented low-profile cavity-backed slot antenna work, the spurious radiation from the proposed antenna’s feeding element is very low and it has less interference on the following circuits.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Jiade Yuan ◽  
Yujie Li ◽  
Zhimeng Xu ◽  
Jiamin Zheng

A compact low-profile wideband circularly polarized slot antenna for global navigation satellite system (GNSS) is presented. The antenna comprises a planar slot radiator with a coplanar waveguide (CPW) feed and a modified ring-shaped reflector to achieve unidirectional radiation. The modified reflector is an inner square patch with four slantly cut corners, a center ring, and an outer ring with a notch; they significantly reduce the separation between the antenna radiator and reflector and therefore the overall antenna height. The overall dimensions are λ0/3 × λ0/3 × λ0/30 (λ0 denotes the free space wavelength at lower frequency). The measured −10 dB bandwidth of |S11|, 3-dB axial ratio (AR) bandwidth, and maximum gain are of 1.53–2.28 GHz, 1.558–1.672 GHz, and 5.87 dBi, respectively. The proposed antenna is simple without any additional feeding networks or shorting probes.


2018 ◽  
Vol 11 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Shilpee Patil ◽  
A. K. Singh ◽  
Binod K. Kanaujia ◽  
R. L. Yadava

AbstractA simple design for triple-band circularly polarized (CP) wide slot antennas is proposed and experimentally investigated. The proposed antenna having a microstrip-fed rectangular patch with T-shaped notch for triple-band operation and a modified wide square slot on ground plane for CP operation. The measured 10 dB reflection bandwidths are 1.24% (≈340 MHz from 2.56 to 2.9 GHz), 9.63% (≈430 MHz from 4.25 to 4.68 GHz), and 5.34% (≈490 MHz from 8.93 to 9.42 GHz). The generated 3 dB axial ratio bandwidths of the proposed antenna are 7.54, 8.98, and 1.65% at operating frequencies around 2.65, 4.45, and 9.09 GHz, respectively. The measured peak gains within the 3 dB axial ratio bands are 3.03, 3.5, and 5.64 dBi. The simulated and measured results for the return loss, axial ratio, and antenna gain show a good agreement, which validate the antenna design.


Frequenz ◽  
2018 ◽  
Vol 72 (7-8) ◽  
pp. 343-351 ◽  
Author(s):  
Shilpee Patil ◽  
A. K. Singh ◽  
Binod K. Kanaujia ◽  
R. L. Yadava

Abstract A low profile wide slot antenna for dual band and dual sense circular polarization (CP) is proposed here and is simulated by using HFSS simulation software.The proposed antenna having a C shaped patch for dual band operation and a wide square slot etched on the ground with two strips for CP operation. In between radiating patch and ground plane, designed antenna has a layer of easily available dielectric (FR-4) material. Proposed antenna shows an impedance bandwidth of 13.8 % at 2.38 GHz of centre frequency and 9.7 % at 4.43 GHz of centre frequency for lower and upper band respectively. The 3-dB axial ratio (AR) bandwidths for lower and upper band are 18.8 % (at 2.44 GHz of centre frequency) and 13.3 % (at 4.29 GHz of centre frequency), respectively. The peak gain for the lower and upper band is found as 4.1 dBi and 3.3 dBi, respectively. A close agreement has been found between the simulated and the measured results.


Sign in / Sign up

Export Citation Format

Share Document