Optimum Blade Design of Pinwheel Type Horizontal Axis Wind Turbine for Low Wind Speed Areas

Author(s):  
Robiul Islam ◽  
Zakia Sultana Snikdha ◽  
Afnan Iffat ◽  
Mhia Md. Zaglul Shahadat
2021 ◽  
Vol 19 ◽  
pp. 505-510
Author(s):  
Cristhian Leonardo Pabón Rojas ◽  
◽  
Carlos Andrés Trujillo Suarez ◽  
Juan Carlos Serrano Rico ◽  
Elkin Gregorio Flórez Serrano ◽  
...  

In order to take advantage of the low wind speed found in the Colombian territory, a gradient-based optimization process (GBA) of 2 airfoils is carried out, using the Xfoil software to evaluate the interactions. The shapes chosen will be destined for the root and for the middle zone of a blade for a small horizontal axis wind turbine (sHAWT). The blade will be created from the calculation of the chord and pitch angle with the blade element momentum methodology (BEM) and the SHAWT will be tested by CFD software to check its performance. As a preliminary result, a root-bound airfoil has been obtained with a higher performance than the airfoil used as a bases.


2020 ◽  
Vol 3 (2) ◽  
pp. 64
Author(s):  
Muhammad Alfi Alfaridzi

Abstract: The use of wind energy in Indonesia is currently still low due to the average wind speed in the Indonesian territory ranging from 3 m / s to 11 m / s, making it difficult to produce electrical energy on a large scale. However, the potential for wind in Indonesia is available almost all year round, making it possible to develop small-scale power generation systems. Innovations in modifying windmills need to be improved so that in low wind speed conditions it can produce electrical energy. Therefore, a HAWT (Horizontal Axis Wind Turbine) blade design was made using a NACA airfoil which has a high Cl / Cd value and produces 500 W of power at wind speeds of 1 - 11 m / s. The research was conducted in 3 stages. The first calculation phase is to determine the radius, chord and twist of the blade. The two stages of the initial blade design were simulated using QBlade software to determine the NACA airfoil being used and to determine the performance coefficient and the resulting power. The three stages of blade design use Solidworks software which produces a 3D blade design. The design results produce a HAWT blade with a taperless NACA 4412 airfoil with blade radius of 1 m, chord width 0.12 m, and twist angle of 5.08 ° - 12.08 °. At a wind speed of 10 m / s, the blade has a maximum Cp of 52%, a maximum power of 1010 W at an angular speed of 450 rpm, a minimum power of 85 W at an angular speed of 95 rpm. The average power produced is 547.5 W. Field test results of Taperless NACA 4412 blades. The results of the field testing are 585.58 W of maximum charge and an average charge of 30.24 W, with the resulting power of 725.55 Wh. Keywords: Blade, Taperless, NACA 4412,Wind Turbine


Author(s):  
Jai N. Goundar ◽  
Sumesh Narayan ◽  
Mohammed Rafiuddin Ahmed

The demand and cost of electricity has increased for Pacific Island Countries (PICs). The electricity from main grid does not reach rural areas and outer islands of Fiji. They burn fuel for electricity and daily lighting. Therefore, there is a need to look for alternative energy sources. Wind turbine technology has developed over the past years and is suitable for generating electricity by tapping wind energy. However, turbines designed to operate at higher wind speed do not perform well in Fiji, because Fiji’s average wind velocity is around 5–6 m/s. A 10 m, 3-bladed horizontal axis wind turbine is designed to operate at low wind speed, cut in speed of 3 m/s, cut off speed of 10 m/s and rated wind speed of 6 m/s. The blade sections were designed for different locations along the blade. The airfoil at the tip (AF0914) a has maximum thickness of 14% and maximum camber of 9%; the thickness varies linearly to the root, at the root the airfoil (AF0920) has a maximum thickness of 20% and maximum camber of 9%. The aerodynamic characteristics of airfoil AF0914 were obtained using Xfoil and were validated by experimentation, at turbulence intensities (Tu) of 1% and 3%, and a Reynolds number (Re) of 200,000. The aerodynamic characteristics of other airfoils were also obtained at operating Re at the turbulence intensities of 1% and 3%. These airfoils have good characteristics at low wind speed, and were used to design the 10 m diameter 3-bladed HAWT for Fiji. The turbine has a linear chord distribution for easy manufacturing purpose. Twist distribution was optimized using Blade Element Momentum (BEM) theory, and theoretical power and turbine performance were obtained using BEM theory. At the rated wind speed of 6 m/s and a TSR of 6.5, the theoretical efficiency of the rotor is around 46% and maximum power is 4.4 kW. The turbine has good performance at lower wind speeds and is suitable for Fiji’s conditions.


Sign in / Sign up

Export Citation Format

Share Document