scholarly journals An all-digital clock and data recovery circuit for spread spectrum clocking applications in 65nm CMOS technology

Author(s):  
Ching-Che Chung ◽  
Duo Sheng ◽  
Yang-Di Lin
2009 ◽  
Vol 56 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Young-Suk Seo ◽  
Jang-Woo Lee ◽  
Hong-Jung Kim ◽  
Changsik Yoo ◽  
Jae-Jin Lee ◽  
...  

2013 ◽  
Vol 385-386 ◽  
pp. 1278-1281 ◽  
Author(s):  
Zheng Fei Hu ◽  
Ying Mei Chen ◽  
Shao Jia Xue

A 25-Gb/s clock and data recovery (CDR) circuit with 1:2 demultiplexer which incorporates a quadrature LC voltage-controlled-oscillator and a half-rate bang-bang phase detector is presented in this paper. A quadrature LC VCO is presented to generate the four-phase output clocks. A half-rate phase detector including four flip-flops samples the 25-Gb/s input data every 20 ps and alignes the data phase. The 25-Gb/s data are retimed and demultiplexed into two 12.5-Gb/s output data. The CDR is designed in TSMC 65nm CMOS Technology. Simulation results show that the recovered clock exhibits a peak-to-peak jitter of 0.524ps and the recovered data exhibits a peak-to-peak jitter of 1.2ps. The CDR circuit consumes 121 mW from a 1.2 V supply.


Sign in / Sign up

Export Citation Format

Share Document