Design of 25-Gb/s Half-Rate Clock and Data Recovery Circuit for Optical Communication

2013 ◽  
Vol 385-386 ◽  
pp. 1278-1281 ◽  
Author(s):  
Zheng Fei Hu ◽  
Ying Mei Chen ◽  
Shao Jia Xue

A 25-Gb/s clock and data recovery (CDR) circuit with 1:2 demultiplexer which incorporates a quadrature LC voltage-controlled-oscillator and a half-rate bang-bang phase detector is presented in this paper. A quadrature LC VCO is presented to generate the four-phase output clocks. A half-rate phase detector including four flip-flops samples the 25-Gb/s input data every 20 ps and alignes the data phase. The 25-Gb/s data are retimed and demultiplexed into two 12.5-Gb/s output data. The CDR is designed in TSMC 65nm CMOS Technology. Simulation results show that the recovered clock exhibits a peak-to-peak jitter of 0.524ps and the recovered data exhibits a peak-to-peak jitter of 1.2ps. The CDR circuit consumes 121 mW from a 1.2 V supply.

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1888
Author(s):  
Tao Liu ◽  
Tiejun Li ◽  
Fangxu Lv ◽  
Bin Liang ◽  
Xuqiang Zheng ◽  
...  

In this paper, an accurate linear model of the Mueller-Muller phase detector (MMPD)-based clock and data recovery circuit (MM-CDR) is proposed, which analyzes several critical points of the MM-CDR including the linearization of the MMPD and the gain of the voter. Using our technique, the jitter between the recovery clock and the input data can be estimated with a sub-picosecond accuracy, as demonstrated in the simulation results of a 56 Gb/s quarter-rate MM-CDR implemented in 28 nm CMOS.


2009 ◽  
Vol 56 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Young-Suk Seo ◽  
Jang-Woo Lee ◽  
Hong-Jung Kim ◽  
Changsik Yoo ◽  
Jae-Jin Lee ◽  
...  

2006 ◽  
Vol 4 ◽  
pp. 287-291
Author(s):  
S. Tontisirin ◽  
R. Tielert

Abstract. A Gb/s clock and data recovery (CDR) circuit using 1/4th-rate digital quadricorrelator frequency detector and skew-calibrated multi-phase voltage-controlled oscillator is presented. With 1/4th-rate clock architecture, the coil-free oscillator can have lower operation frequency providing sufficient low-jitter operation. Moreover, it is an inherent 1-to-4 DEMUX. The skew calibration scheme is applied to reduce phase offset in multi-phase clock generator. The CDR with frequency detector can have small loop bandwidth, wide pull-in range and can operate without the need for a local reference clock. This 1/4th-rate CDR is implemented in standard 0.18 μm CMOS technology. It has an active area of 0.7 mm2 and consumes 100 mW at 1.8 V supply. The CDR has low jitter operation in a wide frequency range from 1–2.25 Gb/s. Measurement of Bit-Error Rate is less than 10−12 for 2.25 Gb/s incoming data 27−1 PRBS, jitter peak-to-peak of 0.7 unit interval (UI) modulation at 10 MHz.


2014 ◽  
Vol 23 (05) ◽  
pp. 1450072 ◽  
Author(s):  
SOMAYEH ADIBIFARD ◽  
SEYYED HASSAN MOUSAVI ◽  
SOHEYL ZIABAKHSH ◽  
MUSTAPHA C. E. YAGOUB

A novel 1/4-rate clock phase detector (PD) structure for phase locked loop (PLL)-based clock and data recovery (CDR) is proposed. In this topology, the retimed data is generated within the circuit and no extra circuit is required. Furthermore, the error and reference signals are independent of delay time through gates and thus, no extra replica circuit is needed to compensate such delay. Designed in a 0.18-μm CMOS technology, the proposed 10 Gb/s PD consumes 30 mA from a 1.8 V supply, resulting in a lower power consumption for high-speed applications compared to conventional topologies.


2021 ◽  
Vol 23 (11) ◽  
pp. 184-197
Author(s):  
Pawan Srivastava ◽  
◽  
Dr. Ram Chandra Singh Chauhan ◽  

A novel phase frequency detector is designed which is made up of 16 transistors whereas conventional is of 48 transistors. This paper also presented the design of charge pump circuit and current starved VCO (CSVCO). These are the critical blocks that are widely used for applications like clock and data recovery circuit, PLL, frequency synthesizer. The proposed PFD eliminates the reset circuit using pass transistor logic and operates effectively at higher frequencies. The circuits are designed using Cadence Virtuoso v6.1 in 45nm CMOS technology having supply voltage 1V. It was found that the power consumption of PFD is 138.2 nW which is significantly lesser than other designs. CSVCO also analysed at operating frequency of 10 MHz to give output oscillation frequency of 1.119 GHz with power dissipation of 18.91 μW. Corner analysis done for both the PFD and CSVCO for various process variations. Monte Carlo analysis also done for the proposed PFD and presented CSVCO to test the circuit reliableness.


Sign in / Sign up

Export Citation Format

Share Document