Design of Mosquito Killers Based on Intelligent Lighting Control over Solar Energy and High-Voltage DC

Author(s):  
Li Kefeng ◽  
Yu Lijun
2018 ◽  
Vol 173 ◽  
pp. 02003
Author(s):  
Zhang Weijiang

In order to solve the unmanned tunnel illumination in remote areas, control system is designed for tunnel lighting. Meanwhile, solar energy is used to solve the energy problem of tunnel lighting. Based on the specific requirements of the highway tunnel, the intelligent control algorithm is designed. On the basis of the algorithm, the intelligent control tunnel lighting system is realized. Control system for tunnel lighting is stable and reliable, unmanned operation can be realized. Practice shows that the intelligent tunnel lighting control system can be successfully applied in remote areas.


Author(s):  
Junzhe Zhang ◽  
Dongjian Jiang ◽  
pin wang ◽  
Jun Zhong ◽  
Gengzhi Sun ◽  
...  

A two-electrode solar rechargeable device is a potential low-cost method for solar energy conversion and storage. However, a low working voltage limits its practical application. It is significant to develop...


2012 ◽  
Vol 588-589 ◽  
pp. 591-594 ◽  
Author(s):  
Xia Li

This article gives the description of the scheme of solar lighting control system. Solar energy is accepted commonly as a green energy because of its unique advantages. In the strong support of the government, the Photovoltaic (PV) generation system gains a rapid development. The stand-alone and grid-connected PV generation systems will be the trend among PV applications. Based on the solar lighting control system, the scheme includes using intelligent control to complete charging and discharging to prevent the battery from being over-charged and over-discharged. Meanwhile the constant current technology is used to drive LED, and the integrated circuit technology is used to implement the solar energy lighting optically controlled self extinguishing.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Author(s):  
L. D. Ackerman ◽  
S. H. Y. Wei

Mature human dental enamel has presented investigators with several difficulties in ultramicrotomy of specimens for electron microscopy due to its high degree of mineralization. This study explores the possibility of combining ion-milling and high voltage electron microscopy as a means of circumventing the problems of ultramicrotomy.A longitudinal section of an extracted human third molar was ground to a thickness of about 30 um and polarized light micrographs were taken. The specimen was attached to a single hole grid and thinned by argon-ion bombardment at 15° incidence while rotating at 15 rpm. The beam current in each of two guns was 50 μA with an accelerating voltage of 4 kV. A 20 nm carbon coating was evaporated onto the specimen to prevent an electron charge from building up during electron microscopy.


Author(s):  
Lee D. Peachey ◽  
Clara Franzini-Armstrong

The effective study of biological tissues in thick slices of embedded material by high voltage electron microscopy (HVEM) requires highly selective staining of those structures to be visualized so that they are not hidden or obscured by other structures in the image. A tilt pair of micrographs with subsequent stereoscopic viewing can be an important aid in three-dimensional visualization of these images, once an appropriate stain has been found. The peroxidase reaction has been used for this purpose in visualizing the T-system (transverse tubular system) of frog skeletal muscle by HVEM (1). We have found infiltration with lanthanum hydroxide to be particularly useful for three-dimensional visualization of certain aspects of the structure of the T- system in skeletal muscles of the frog. Specifically, lanthanum more completely fills the lumen of the tubules and is denser than the peroxidase reaction product.


Author(s):  
L. E. Thomas ◽  
J. S. Lally ◽  
R. M. Fisher

In addition to improved penetration at high voltage, the characteristics of HVEM images of crystalline materials are changed markedly as a result of many-beam excitation effects. This leads to changes in optimum imaging conditions for dislocations, planar faults, precipitates and other features.Resolution - Because of longer focal lengths and correspondingly larger aberrations, the usual instrument resolution parameter, CS174 λ 374 changes by only a factor of 2 from 100 kV to 1 MV. Since 90% of this change occurs below 500 kV any improvement in “classical” resolution in the MVEM is insignificant. However, as is widely recognized, an improvement in resolution for “thick” specimens (i.e. more than 1000 Å) due to reduced chromatic aberration is very large.


Sign in / Sign up

Export Citation Format

Share Document