An Improvement Algorithm for Online Identification of Thevenin Equivalent Parameters

Author(s):  
Xinnan Chen ◽  
Yuan Sun ◽  
Rui Yin
1989 ◽  
Vol 3 (3) ◽  
pp. 397-403 ◽  
Author(s):  
P. Whittle

A condition expressed in Eq. (7) is given which, with one simplifying regularity condition, ensures that the policy-improvement algorithm is equivalent to application of the Newton–Raphson algorithm to an optimality condition. It is shown that this condition covers the two known cases of such equivalence, and another example is noted. The condition is believed to be necessary to within transformations of the problem, but this has not been proved.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1733
Author(s):  
Hao Wang ◽  
Yanping Zheng ◽  
Yang Yu

In order to improve the estimation accuracy of the battery state of charge (SOC) based on the equivalent circuit model, a lithium-ion battery SOC estimation method based on adaptive forgetting factor least squares and unscented Kalman filtering is proposed. The Thevenin equivalent circuit model of the battery is established. Through the simulated annealing optimization algorithm, the forgetting factor is adaptively changed in real-time according to the model demand, and the SOC estimation is realized by combining the least-squares online identification of the adaptive forgetting factor and the unscented Kalman filter. The results show that the terminal voltage error identified by the adaptive forgetting factor least-squares online identification is extremely small; that is, the model parameter identification accuracy is high, and the joint algorithm with the unscented Kalman filter can also achieve a high-precision estimation of SOC.


2014 ◽  
Vol 33 (10) ◽  
pp. 1060-1064 ◽  
Author(s):  
Julie A. Bettinger ◽  
Otto G. Vanderkooi ◽  
Judy MacDonald ◽  
James D. Kellner

Sign in / Sign up

Export Citation Format

Share Document