Technology challenges for the Square Kilometer Array

Author(s):  
Dayton L. Jones
2017 ◽  
Vol 26 (12) ◽  
pp. 1743004 ◽  
Author(s):  
John Estes ◽  
Michael Kavic ◽  
Matthew Lippert ◽  
John H. Simonetti

Pulsars (PSRs) are some of the most accurate clocks found in nature, while black holes (BHs) offer a unique arena for the study of quantum gravity. As such, PSR–BH binaries provide ideal astrophysical systems for detecting effects of quantum gravity. With the success of aLIGO and the advent of instruments like the Square Kilometer Array (SKA) and Evolved Laser Interferometer Space Antenna (eLISA), the prospects for discovery of such PSR–BH binaries are very promising. We argue that PSR–BH binaries can serve as ready-made testing grounds for proposed resolutions to the BH information paradox. We propose using timing signals from a PSR beam passing through the region near a BH event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a BH lead to an increase in the measured root-mean-square deviation of arrival times of PSR pulsar traveling near the horizon.


Galaxies ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 3
Author(s):  
Vesna Lukic ◽  
Francesco de Gasperin ◽  
Marcus Brüggen

Finding and classifying astronomical sources is key in the scientific exploitation of radio surveys. Source-finding usually involves identifying the parts of an image belonging to an astronomical source, against some estimated background. This can be problematic in the radio regime, owing to the presence of correlated noise, which can interfere with the signal from the source. In the current work, we present ConvoSource, a novel method based on a deep learning technique, to identify the positions of radio sources, and compare the results to a Gaussian-fitting method. Since the deep learning approach allows the generation of more training images, it should perform well in the source-finding task. We test the source-finding methods on artificial data created for the data challenge of the Square Kilometer Array (SKA). We investigate sources that are divided into three classes: star forming galaxies (SFGs) and two classes of active galactic nuclei (AGN). The artificial data are given at two different frequencies (560 MHz and 1400 MHz), three total integration times (8 h, 100 h, 1000 h), and three signal-to-noise ratios (SNRs) of 1, 2, and 5. At lower SNRs, ConvoSource tends to outperform a Gaussian-fitting approach in the recovery of SFGs and all sources, although at the lowest SNR of one, the better performance is likely due to chance matches. The Gaussian-fitting method performs better in the recovery of the AGN-type sources at lower SNRs. At a higher SNR, ConvoSource performs better on average in the recovery of AGN sources, whereas the Gaussian-fitting method performs better in the recovery of SFGs and all sources. ConvoSource usually performs better at shorter total integration times and detects more true positives and misses fewer sources compared to the Gaussian-fitting method; however, it detects more false positives.


Author(s):  
S Sazonov ◽  
I Khabibullin

Abstract There is a hope that looking into the early Universe with next-generation telescopes, one will be able to observe the early accretion growth of supermassive black holes (BHs) when their masses were ∼104–106M⊙. According to the standard accretion theory, the bulk of the gravitational potential energy released by radiatively efficient accretion of matter onto a BH in this mass range is expected to be emitted in the extreme UV–ultrasoft X-ray bands. We demonstrate that such a ’miniquasar’ at z ∼ 15 should leave a specific, localized imprint on the 21 cm cosmological signal. Namely, its position on the sky will be surrounded by a region with a fairly sharp boundary of several arcmin radius, within which the 21 cm brightness temperature quickly grows inwards from the background value of ∼−250 mK to ∼+30 mK. The size of this region is only weakly sensitive to the BH mass, so that the flux density of the excess 21 cm signal is expected to be ∼0.1–0.2 mJy at z ∼ 15 and should be detectable by the Square Kilometer Array. We argue that an optimal strategy would be to search for such signals from high-z miniquasar candidates that can be found and localized with a next-generation X-ray mission such as Lynx. A detection of the predicted 21 cm signal would provide a measurement of the growing BH’s redshift to within Δz/(1 + z) ≲ 0.01.


2001 ◽  
Vol 182 ◽  
pp. 205-208
Author(s):  
Wim Brouw

AbstractThe next generation radio telescope being planned is the Square Kilometer Array (SKA): an international project which is currently in the research and development phase. Australia is one of the partner countries in the SKA consortium; here I describe some of the SKA research being undertaken in Australia.


2008 ◽  
Author(s):  
Kriyang Shah ◽  
Hai P. Le ◽  
Jugdutt Singh ◽  
John Devlin

2020 ◽  
Vol 35 (10) ◽  
pp. 1153-1160
Author(s):  
Rowanne Steiner ◽  
Daniel Ung ◽  
Anouk Hubrechsen ◽  
Robert Jones ◽  
Randall Wayth ◽  
...  

The far-field pattern of a geometrically large and complex antenna used in low-frequency radio astronomy is computationally expensive to simulate on electromagnetic simulators, such as FEKO. For example, one station of the Square Kilometer Array, which consists of 256 log-periodic antenna elements, will take years to simulate using the full CAD model for the full operational frequency band. This paper focuses on reducing the simulation time for a single antenna element by simplifying the simulation model, thus decreasing the number of unknowns that have to be solved in a simulation. An iterative process for optimizing the simplification of such an element is described, while keeping the reflection coefficient within 1 dB absolute mean deviation of the measured data. After four iterations, the amount of unknowns to be solved, which includes the number of triangles and segments, was reduced from 29,307 to 11,991. This decreased the computation time by 86.5%, making array simulations feasible. Using the techniques described in the paper, other antenna constructions can benefit from it and be simulated more efficiently.


2004 ◽  
Vol 48 (11-12) ◽  
pp. 1029-1038 ◽  
Author(s):  
C.L. Carilli ◽  
S. Furlanetto ◽  
F. Briggs ◽  
M. Jarvis ◽  
S. Rawlings ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document