A quantitative study of the optimal control model for an electric power generating system

2013 Africon ◽  
2013 ◽  
Author(s):  
Y. O. Aderinto ◽  
O. M. Bamigbola
2012 ◽  
Vol 23 (2) ◽  
pp. 65-72
Author(s):  
Yidiat O. Aderinto ◽  
Mathias O. Bamigbola

The economic independence of any nation depends largely on the supply of abundant and reliable electric power and the extension of electricity services to all towns and villages in the country. In this work, the mathematical study of an electric power generating system model was presented via optimal control theory, in an attempt to maximize the power generating output and minimize the cost of generation. The factors affecting power generation at minimum cost are operating efficiencies of generators, fuel cost and transmission losses, but the most efficient generator in the system may not guarantee minimum cost as it may be located in an area where fuel cost is high. We choose the generator capacity as our control ui(t), since we cannot neglect the operation limitation on the equipment because of its lifespan, the upper bound for ui(t) is choosing to be 1 to represent the total capability of the machine and 0 to be the lower bound. The model is analyzed, generation loss free equilibrium and stability is established, and finally applications using real life data is presented using one generator and three generator systems respectively.


2011 ◽  
Vol 467-469 ◽  
pp. 1066-1071
Author(s):  
Zhong Xin Li ◽  
Ji Wei Guo ◽  
Ming Hong Gao ◽  
Hong Jiang

Taking the full-vehicle eight-freedom dynamic model of a type of bus as the simulation object , a new optimal control method is introduced. This method is based on the genetic algorithm, and the full-vehicle optimal control model is built in the MatLab. The weight matrix of the optimal control is optimized through the genetic algorithm; then the outcome is compared with the artificially-set optimal control simulation, which shows that the genetic-algorithm based optimal control presents better performance, thereby creating a smoother ride and improving the steering stability of the vehicle.


2018 ◽  
Vol 11 (06) ◽  
pp. 1850090 ◽  
Author(s):  
S. Athithan ◽  
Mini Ghosh ◽  
Xue-Zhi Li

The problem of corruption is of serious concern in all the nations, more so in the developing countries. This paper presents the formulation of a corruption control model and its analysis using the theory of differential equations. We found the equilibria of the model and stability of these equilibria are discussed in detail. The threshold quantity [Formula: see text] which has a similar implication here as in the epidemiological modeling is obtained for the present model. The corruption free equilibrium is found to be stable when [Formula: see text] is less than [Formula: see text] and unstable for [Formula: see text]. The endemic equilibrium which signifies the presence of corrupted individuals in the society exists only when [Formula: see text]. This equilibrium point is locally asymptotically stable whenever it exists. We perform extensive numerical simulations to support the analytical findings. Furthermore, we extend the model to include optimal control and the optimal control profile is obtained to get the maximum control within a stipulated period of time. Our presented results show that the level of corruption in the society can be reduced if corruption control efforts through media/punishments etc. are increased and put in place.


Sign in / Sign up

Export Citation Format

Share Document