Analysis of Cimandiri Fault Mechanism Type Based on Strain Pattern from GPS Observations in the Year 2010 – 2017

Author(s):  
Intan Hairani Fitri ◽  
Agustinus Bambang Setyadji ◽  
Irwan Meilano ◽  
Susilo
2018 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Achmad Faris ◽  
Estu Kriswati ◽  
Irwan Meilano ◽  
Dina Anggreni Sarsito

ABSTRAKGunung Batur yang terletak di Kabupaten Bangli, Bali, terakhir meletus pada tahun 2000. Pada 2009 terjadi peningkatan aktivitas vulkanis di Gunug Batur walaupun tidak terjadi letusan. Penelitian ini bertujuan untuk mengetahui pola deformasi pada Gunung Batur serta keterkaitannya dengan peningkatan vulkanis pada tahun 2009. Analisis didasarkan pada pola vektor pergeseran dan pola regangan masing-masing titik pengamatan GPS berkala pada area Gunung Batur tahun 2008, 2009, 2013, dan 2015. Berdasarkan pengamatan GPS Oktober 2008-November 2009 pola deformasi menunjukkan adanya inflasi dengan pola vektor pergeseran titik pengamatan GPS dominan ke arah luar dari Gunung Batur, selain itu pola regangan memperlihatkan bahwa pada area bagian utara dan timurlaut Gunung Batur dominan terjadi ekstensi. Pada pengamatan GPS untuk periode November 2009-Februari 2013 pola deformasi menunjukkan adanya deflasi pada Gunung Batur dengan pola vektor pergeseran titik pengamatan GPS berarah menuju Gunung Batur dan pola regangan memperlihatkan bahwa pada area Gunung Batur terjadi kompresi. Kata Kunci: Gunung Batur, deflasi, deformasi, pergeseran, GPS, inflasi, regangan. ABSTRACTBatur volcano located in Bangli, Bali, last erupted in 2000. Increased in the volcanic activity occurred in 2009 but did not followed by eruption. This study aims to determine ground deformation pattern in Batur volcano and its association with the increased in volcanic activity in 2009 based on the pattern of displacement vector and strain using 2008-2015 campaign GPS data. During period of October 2008-November 2009, Batur Volcano experience inflation and strain pattern shows that the area of the north and northeast of Batur Volcano experienced extension. During November 2009-February 2013, Batur Volcano experienced deflation with GPS displacement directed towards Batur Volcano and a strain pattern of compression around Batur Volcano. Keywords: Batur Volcano, deflation, deformation, displacement, GPS, inflation, strain.


2010 ◽  
Vol 53 (4) ◽  
pp. 639-645 ◽  
Author(s):  
Yi-Yi WU ◽  
Zhen-Jie HONG ◽  
Peng GUO ◽  
Jie ZHENG
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
pp. 53-61
Author(s):  
E. Mysen

AbstractA network of pointwise available height anomalies, derived from levelling and GPS observations, can be densified by adjusting a gravimetric quasigeoid using least-squares collocation. The resulting type of Corrector Surface Model (CSM) is applied by Norwegian surveyors to convert ellipsoidal heights to normal heights expressed in the official height system NN2000. In this work, the uncertainty related to the use of a CSM to predict differences in height anomaly was sought. As previously, the application of variograms to determine the local statistical properties of the adopted collocation model led to predictions that were consistent with their computed uncertainties. For the purpose of predicting height anomaly differences, the effect of collocation was seen to be moderate in general for the small spatial separations considered (< 10 km). However, the relative impact of collocation could be appreciable, and increasing with distance, near the network. At last, it was argued that conservative uncertainties of height anomaly differences may be obtained by rescaling output of a grid interpolation by \sqrt \Delta, where Δ is the spatial separation of the two locations for which the difference is sought.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Marlit Karen Strobel ◽  
Maria Eveslage ◽  
Helen Ann Köster ◽  
Mareike Möllers ◽  
Janina Braun ◽  
...  

AbstractObjectivesThe aim of this study was to introduce cervical strain elastography to objectively assess the cervical tissue transformation process during induction of labour (IOL) and to evaluate the potential of cervical elastography as a predictor of successful IOL.MethodsA total of 41 patients with full-term pregnancies elected for an IOL were included. Vaginal ultrasound with measurement of cervical length and elastography and assessment of the Bishop Score were performed before and 3 h after IOL. The measured parameters were correlated to the outcome of IOL and the time until delivery.ResultsWe observed an association between the strain pattern and the value of the strain ratio 3 h after IOL and a successful IOL (p=0.0343 and p=0.0342, respectively) which can be well demonstrated by the results after 48 h. In our study population the cervical length and the Bishop Score did not prove to be relevant parameters for the prediction of a successful IOL.ConclusionsWe demonstrated for the first time that the cervical elastography pattern after the first prostaglandine application can help predict the outcome of IOL.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Mani Sivakandan ◽  
Yuichi Otsuka ◽  
Priyanka Ghosh ◽  
Hiroyuki Shinagawa ◽  
Atsuki Shinbori ◽  
...  

AbstractThe total electron content (TEC) data derived from the GAIA (Ground-to-topside model of Atmosphere Ionosphere for Aeronomy) is used to study the seasonal and longitudinal variation of occurrence of medium-scale traveling ionospheric disturbances (MSTIDs) during daytime (09:00–15:00 LT) for the year 2011 at eight locations in northern and southern hemispheres, and the results are compared with ground-based Global Positioning System (GPS)-TEC. To derive TEC variations caused by MSTIDs from the GAIA (GPS) data, we obtained detrended TEC by subtracting 2-h (1-h) running average from the TEC, and calculated standard deviation of the detrended TEC in 2 h (1 h). MSTID activity was defined as a ratio of the standard deviation to the averaged TEC. Both GAIA simulation and GPS observations data show that daytime MSTID activities in the northern and southern hemisphere (NH and SH) are higher in winter than in other seasons. From the GAIA simulation, the amplitude of the meridional wind variations, which could be representative of gravity waves (GWs), shows two peaks in winter and summer. The winter peak in the amplitude of the meridional wind variations coincides with the winter peak of the daytime MSTIDs, indicating that the high GW activity is responsible for the high MSTID activity. On the other hand, the MSTID activity does not increase in summer. This is because the GWs in the thermosphere propagate poleward in summer, and equatorward in winter, and the equatorward-propagating GWs cause large plasma density perturbations compared to the poleward-propagating GWs. Longitudinal variation of daytime MSTID activity in winter is seen in both hemispheres. The MSTID activity during winter in the NH is higher over Japan than USA, and the MSTID activity during winter in the SH is the highest in South America. In a nutshell, GAIA can successfully reproduce the seasonal and longitudinal variation of the daytime MSTIDs. This study confirms that GWs cause the daytime MSTIDs in GAIA and amplitude and propagation direction of the GWs control the noted seasonal variation. GW activities in the middle and lower atmosphere cause the longitudinal variation.


Sign in / Sign up

Export Citation Format

Share Document