Inversion of surface soil moisture based on ASAR-GM data: Combining water cloud and change detection models

Author(s):  
Lijie Zhang ◽  
Xiuzhen Wang ◽  
Mengting Jin ◽  
Jingfeng Huang ◽  
Hongyan Wu ◽  
...  
2021 ◽  
Vol 10 (3) ◽  
pp. 243-250
Author(s):  
Rida KHELLOUK ◽  
Ahmed BARAKAT ◽  
Aafaf EL JAZOULİ ◽  
Hayat LİONBOUİ ◽  
Tarik BENABDELOUAHAB

2019 ◽  
Vol 11 (16) ◽  
pp. 1956 ◽  
Author(s):  
Minfeng Xing ◽  
Binbin He ◽  
Xiliang Ni ◽  
Jinfei Wang ◽  
Gangqiang An ◽  
...  

Surface soil moisture (SSM) retrieval over agricultural fields using synthetic aperture radar (SAR) data is often obstructed by the vegetation effects on the backscattering during the growing season. This paper reports the retrieval of SSM from RADARSAT-2 SAR data that were acquired over wheat and soybean fields throughout the 2015 (April to October) growing season. The developed SSM retrieval algorithm includes a vegetation-effect correction. A method that can adequately represent the scattering behavior of vegetation-covered area was developed by defining the backscattering from vegetation and the underlying soil individually to remove the effect of vegetation on the total SAR backscattering. The Dubois model was employed to describe the backscattering from the underlying soil. A modified Water Cloud Model (MWCM) was used to remove the effect of backscattering that is caused by vegetation canopy. SSM was derived from an inversion scheme while using the dual co-polarizations (HH and VV) from the quad polarization RADARSAT-2 SAR data. Validation against ground measurements showed a high correlation between the measured and estimated SSM (R2 = 0.71, RMSE = 4.43 vol.%, p < 0.01), which suggested an operational potential of RADARSAT-2 SAR data on SSM estimation over wheat and soybean fields during the growing season.


2020 ◽  
Vol 12 (11) ◽  
pp. 1844
Author(s):  
Li Zhang ◽  
Xiaolei Lv ◽  
Qi Chen ◽  
Guangcai Sun ◽  
Jingchuan Yao

As an indispensable ecological parameter, surface soil moisture (SSM) is of great significance for understanding the growth status of vegetation. The cooperative use of synthetic aperture radar (SAR) and optical data has the advantage of considering both vegetation and underlying soil scattering information, which is suitable for SSM monitoring of vegetation areas. The main purpose of this paper is to establish an inversion approach using Terra-SAR and Landsat-7 data to estimate SSM at three different stages of corn growth in the irrigated area. A combined scattering model that can adequately represent the scattering characteristics of the vegetation coverage area is proposed by modifying the water cloud model (WCM) to reduce the effect of vegetation on the total SAR backscattering. The backscattering from the underlying soil is expressed by an empirical model with good performance in X-band. The modified water cloud model (MWCM) as a function of normalized differential vegetation index (NDVI) considers the contribution of vegetation to the backscattering signal. An inversion technique based on artificial neural network (ANN) is used to invert the combined scattering model for SSM estimation. The inversion method is established and verified using datasets of three different growth stages of corn. Using the proposed method, we estimate the SSM with a correlation coefficient R ≥ 0.72 and root-mean-square error R M S E ≤ 0.043 cm 3 /cm 3 at the emergence stage, with R ≥ 0.87 and R M S E ≤ 0.046 cm 3 /cm 3 at the trefoil stage and with R ≥ 0.70 and R M S E ≤ 0.064 cm 3 /cm 3 at the jointing stage. The results suggest that the method proposed in this paper has operational potential in estimating SSM from Terra-SAR and Landsat-7 data at different stages of early corn growth.


Author(s):  
Xingming Zheng ◽  
Zhuangzhuang Feng ◽  
Lei Li ◽  
Bingzhe Li ◽  
Tao Jiang ◽  
...  

2010 ◽  
Vol 24 (18) ◽  
pp. 2507-2519 ◽  
Author(s):  
Y. Zhao ◽  
S. Peth ◽  
X. Y. Wang ◽  
H. Lin ◽  
R. Horn

Sign in / Sign up

Export Citation Format

Share Document