scholarly journals Retrieving Surface Soil Moisture over Wheat and Soybean Fields during Growing Season Using Modified Water Cloud Model from Radarsat-2 SAR Data

2019 ◽  
Vol 11 (16) ◽  
pp. 1956 ◽  
Author(s):  
Minfeng Xing ◽  
Binbin He ◽  
Xiliang Ni ◽  
Jinfei Wang ◽  
Gangqiang An ◽  
...  

Surface soil moisture (SSM) retrieval over agricultural fields using synthetic aperture radar (SAR) data is often obstructed by the vegetation effects on the backscattering during the growing season. This paper reports the retrieval of SSM from RADARSAT-2 SAR data that were acquired over wheat and soybean fields throughout the 2015 (April to October) growing season. The developed SSM retrieval algorithm includes a vegetation-effect correction. A method that can adequately represent the scattering behavior of vegetation-covered area was developed by defining the backscattering from vegetation and the underlying soil individually to remove the effect of vegetation on the total SAR backscattering. The Dubois model was employed to describe the backscattering from the underlying soil. A modified Water Cloud Model (MWCM) was used to remove the effect of backscattering that is caused by vegetation canopy. SSM was derived from an inversion scheme while using the dual co-polarizations (HH and VV) from the quad polarization RADARSAT-2 SAR data. Validation against ground measurements showed a high correlation between the measured and estimated SSM (R2 = 0.71, RMSE = 4.43 vol.%, p < 0.01), which suggested an operational potential of RADARSAT-2 SAR data on SSM estimation over wheat and soybean fields during the growing season.

2020 ◽  
Vol 12 (11) ◽  
pp. 1844
Author(s):  
Li Zhang ◽  
Xiaolei Lv ◽  
Qi Chen ◽  
Guangcai Sun ◽  
Jingchuan Yao

As an indispensable ecological parameter, surface soil moisture (SSM) is of great significance for understanding the growth status of vegetation. The cooperative use of synthetic aperture radar (SAR) and optical data has the advantage of considering both vegetation and underlying soil scattering information, which is suitable for SSM monitoring of vegetation areas. The main purpose of this paper is to establish an inversion approach using Terra-SAR and Landsat-7 data to estimate SSM at three different stages of corn growth in the irrigated area. A combined scattering model that can adequately represent the scattering characteristics of the vegetation coverage area is proposed by modifying the water cloud model (WCM) to reduce the effect of vegetation on the total SAR backscattering. The backscattering from the underlying soil is expressed by an empirical model with good performance in X-band. The modified water cloud model (MWCM) as a function of normalized differential vegetation index (NDVI) considers the contribution of vegetation to the backscattering signal. An inversion technique based on artificial neural network (ANN) is used to invert the combined scattering model for SSM estimation. The inversion method is established and verified using datasets of three different growth stages of corn. Using the proposed method, we estimate the SSM with a correlation coefficient R ≥ 0.72 and root-mean-square error R M S E ≤ 0.043 cm 3 /cm 3 at the emergence stage, with R ≥ 0.87 and R M S E ≤ 0.046 cm 3 /cm 3 at the trefoil stage and with R ≥ 0.70 and R M S E ≤ 0.064 cm 3 /cm 3 at the jointing stage. The results suggest that the method proposed in this paper has operational potential in estimating SSM from Terra-SAR and Landsat-7 data at different stages of early corn growth.


2021 ◽  
Vol 10 (3) ◽  
pp. 243-250
Author(s):  
Rida KHELLOUK ◽  
Ahmed BARAKAT ◽  
Aafaf EL JAZOULİ ◽  
Hayat LİONBOUİ ◽  
Tarik BENABDELOUAHAB

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 580
Author(s):  
Emna Ayari ◽  
Zeineb Kassouk ◽  
Zohra Lili-Chabaane ◽  
Nicolas Baghdadi ◽  
Mehrez Zribi

The objective of this paper was to estimate soil moisture in pepper crops with drip irrigation in a semi-arid area in the center of Tunisia using synthetic aperture radar (SAR) data. Within this context, the sensitivity of L-band (ALOS-2) in horizontal-horizontal (HH) and horizontal-vertical (HV) polarizations and C-band (Sentinel-1) data in vertical-vertical (VV) and vertical-horizontal (VH) polarizations is examined as a function of soil moisture and vegetation properties using statistical correlations. SAR signals scattered by pepper-covered fields are simulated with a modified version of the water cloud model using L-HH and C-VV data. In spatially heterogeneous soil moisture cases, the total backscattering is the sum of the bare soil contribution weighted by the proportion of bare soil (one-cover fraction) and the vegetation fraction cover contribution. The vegetation fraction contribution is calculated as the volume scattering contribution of the vegetation and underlying soil components attenuated by the vegetation cover. The underlying soil is divided into irrigated and non-irrigated parts owing to the presence of drip irrigation, thus generating different levels of moisture underneath vegetation. Based on signal sensitivity results, the potential of L-HH data to retrieve soil moisture is demonstrated. L-HV data exhibit a higher potential to retrieve vegetation properties regarding a lower potential for soil moisture estimation. After calibration and validation of the proposed model, various simulations are performed to assess the model behavior patterns under different conditions of soil moisture and pepper biophysical properties. The results highlight the potential of the proposed model to simulate a radar signal over heterogeneous soil moisture fields using L-HH and C-VV data.


2020 ◽  
Author(s):  
Nadia Ouaadi ◽  
Lionel Jarlan ◽  
Jamal Ezzahar ◽  
Saïd Khabba ◽  
Mehrez Zribi ◽  
...  

&lt;p&gt;High spatial and temporal resolution products of Sentinel-1 are used for surface soil moisture (SSM) mapping over wheat fields in semi-arid areas. Within these regions, monitoring the water-use is a critical aspect for optimizing the management of the limited water resources via irrigation monitoring. SSM is one of the principal quantities affecting microwave remote sensing. This sensitivity has been exploited to estimate SSM from radar data, which has the advantages of providing data independent of illumination and weather conditions. In addition, with the use of Sentinel-1 products, the spatial and temporal resolution is greatly improved. Within this context, the main objective of this work is estimate SSM over wheat fields using an approach based on the use of C-band Sentinel-1 radar data only. Over the study site, field measurement are collected during 2016-2017 and 2017-2018 growing seasons over two fields of winter wheat with drip irrigation located in the Haouz plain in the center of Morocco. Data of other sites in Morocco and Tunisia are taken for validation purposes. The validation database contains a total number of 20 plots divided between irrigated and rainfed wheat plots. Two different information extracted from Sentinel-1 products are used: the backscattering coefficient and the interferometric coherence. A total number of 408 GRD and 419 SLC images were processed for computing the backscattering coefficient and the interferometric coherence, respectively. The analysis of Sentinel-1 time series over the study site show that coherence is sensitive to the development of wheat, while the backscatter coefficient is widely linked to changes in surface soil moisture. Later on, the Water Cloud Model coupled with the Oh et al, 1992 model were used for better understand the backscattering mechanism of wheat canopies. The coupled model is calibrated and validated over the study site and it proved to goodly enough reproduce the Sentinel-1 backscatter with RMSE ranging from 1.5 to 2.52 dB for VV and VH using biomass as a descriptor of wheat. On the other side, the analysis show that coherence is well correlated to biomass. Thus, the calibrated model is used in an inversion algorithm to retrieve SSM using the Sentinel-1 backscatter and coherence as inputs. The results of inversion show that the proposed new approach is able to retrieve the surface soil moisture at 35.2&amp;#176; for VV, with R=0.82, RMSE=0.05m&lt;sup&gt;3/&lt;/sup&gt;m&lt;sup&gt;3 &lt;/sup&gt;and no bias. Using the validation database of Morocco and Tunisia, R is always greater than 0.7 and RMSE and bias are less than 0.008 m&lt;sup&gt;3/&lt;/sup&gt;m&lt;sup&gt;3&lt;/sup&gt; and 0.03 m&lt;sup&gt;3/&lt;/sup&gt;m&lt;sup&gt;3&lt;/sup&gt;, respectively even that the incidence angle is higher (40&amp;#176;). In order to assess its quality, the approach is compared to four SSM retrieval methods that use radar and optical data in empirical and semi-empirical approaches. Results indicate that the proposed approach shows an improvement of SSM retrieval between 17% and 42% compared to other methods. Finally, the validated new approach is used for SSM mapping, with a spatial resolution of 10*10 m, over irrigated perimeters of wheat in Morocco.&lt;/p&gt;


2020 ◽  
Vol 12 (1) ◽  
pp. 183 ◽  
Author(s):  
Chenyang Xu ◽  
John J. Qu ◽  
Xianjun Hao ◽  
Di Wu

Surface soil moisture (SSM), the average water content of surface soil (up to 5 cm depth), plays a key role in the energy exchange within the ecosystem. We estimated SSM in areas with vegetation cover (grassland) by combining microwave and optical satellite measurements in the central Tibetan Plateau (TP) in 2015. We exploited TERRA moderate resolution imaging spectroradiometer (MODIS) and Sentinel-1A synthetic aperture radar (SAR) observations to estimate SSM through a simplified water-cloud model (sWCM). This model considers the impact of vegetation water content (VWC) to SSM retrieval by integrating the vegetation index (VI), the normalized difference water index (NDWI), or the normalized difference infrared index (NDII). Sentinel-1 SAR C-band backscattering coefficients, incidence angle, and NDWI/NDII were assimilated in the sWCM to monitor SSM. The soil moisture and temperature monitoring network on the central TP (CTP-SMTMN) measures SSM within the study area, and ground measurements were applied to train and validate the model. Via the proposed methods, we estimated the SSM in vegetated area with an R2 of 0.43 and a ubRMSE of 0.06 m3/m3 when integrating the NDWI and with an R2 of 0.45 and a ubRMSE of 0.06 m3/m3 when integrating the NDII.


Sign in / Sign up

Export Citation Format

Share Document