Tool holder sensor design for measuring the cutting force in CNC turning machines

Author(s):  
Daniel Alberto Reyes Uquillas ◽  
Syh-Shiuh Yeh
CIRP Annals ◽  
2021 ◽  
Author(s):  
Yuan-Liu Chen ◽  
Fuwen Chen ◽  
Zhongwei Li ◽  
Yang Zhang ◽  
Bingfeng Ju ◽  
...  

2015 ◽  
Vol 799-800 ◽  
pp. 366-371 ◽  
Author(s):  
Deuanphan Chanthana ◽  
Somkiat Tangjitsitcharoen

The roundness is one of the most important criteria to accept the mechanical parts in the CNC turning process. The relations of the roundness, the cutting conditions and the cutting forces in CNC turning is hence studied in this research. The dynamometer is installed on the turret of the CNC turning machine to measure the in-process cutting force signals. The cutting parameters are investigated to analyze the effects of them on the roundness which are the cutting speed, the feed rate, the depth of cut, the tool nose radius and the rake angle. The experimentally obtained results showed that the better roundness is obtained with an increase in cutting speed, tool nose radius and rake angle. The relation between the cutting parameters and the roundness can be explained by the in-process cutting forces. It is understood that the roundness can be monitored by using the in-process cutting forces.


2012 ◽  
Vol 239-240 ◽  
pp. 661-669 ◽  
Author(s):  
Somkiat Tangjitsitcharoen

The aim of this research is to investigate the relation between the surface roughness and the dynamic cutting force ratio during the in-process cutting in CNC turning process. The proposed surface roughness model is developed based on the experimentally obtained results by employing the exponential function with five factors of the cutting speed, the feed rate, the tool nose radius, the depth of cut, and the dynamic cutting force ratio. The dynamic cutting force ratio is proposed to predict the surface roughness during the cutting, which can be calculated and obtained by taking the ratio of the corresponding time records of the area of thedynamic feed force to that of the dynamic main force. The in-process relation between dynamic cutting force ratio and surface roughness can be proved by the frequency of the dynamic cutting force which corresponds to the surface roughnessfrequency. The multiple regression analysis is utilized to calculate the regression coefficients with the use of the least square method at 95% confident level. The proposed model has been verified by the new cutting tests. It is understood that the developed surface roughness model can be used to predict the in-process surface roughness with the high accuracy of 90.3% by utilizing the dynamic cutting force ratio.


2001 ◽  
Vol 34 (13) ◽  
pp. 711-716
Author(s):  
M.M. Negm ◽  
A.M. Bassiuny

2020 ◽  
Vol 108 (1-2) ◽  
pp. 299-312
Author(s):  
Yu-Wen Chen ◽  
Yao-Fu Huang ◽  
Kuo-Tsai Wu ◽  
Sheng-Jye Hwang ◽  
Huei-Huang Lee

2012 ◽  
Vol 510 ◽  
pp. 50-53
Author(s):  
Chun Lei Li

Sources and measurement of cutting forces are studied to establish the steady-state cutting force prediction model. Modeling of work piece machining error is analyzed, a simplified process coordinate system is established, and the mathematical solving model of machining error within the work piece is given. The cutting force due to work piece bending deformation is studied, a work piece deformation factor error model is established based on steady-state cutting force and the prediction simulation of cutting forces and machining error is achieved.


2016 ◽  
Vol 836-837 ◽  
pp. 359-366
Author(s):  
Hou Ming Zhou ◽  
Bo Liu ◽  
Wen Yi Luo ◽  
Gao Feng Zhang ◽  
You Hang Zhou ◽  
...  

A calculation scheme to gain the relationship between the thickness of shrink-fit holder and thermodynamic properties. Based on the theoretical analysis of fitting molder between shrink-fit holder and tool, then the thermodynamic properties of the shrink-fit holder and cutting tool such as contact pressure, equivalent stress and deformation are analyzed at different thickness of shrink-fit holder in static, under cutting force and inducting heating by using the finite element software ANSYS. The results show that the total contact pressure and maximum equivalent stress increased and the minimum thermal displacement difference decreased with the increase of holder thickness. Under the action of cutting force, the contact stress on the tool holder no longer uniformed and the maximum contact stress significantly increased, cutting tool also deformed. Finally a method to determine the reasonable holder thickness is given and it has a practical guiding significance for the design and selection of the shrink-fit tool holder.


Sign in / Sign up

Export Citation Format

Share Document