Feedrate optimization for worn cutter with measured cutting force in rough milling

Author(s):  
Ming Luo ◽  
Yongfeng Hou ◽  
Dinghua Zhang
2011 ◽  
Vol 291-294 ◽  
pp. 2965-2969
Author(s):  
Yu Jun Cai ◽  
Hua Shen ◽  
Tie Li Qi

A new cutting force model of ball-end mill with double effect is developed through analysing the machining process by using differential geometry. The cutting force model is needed to be revised for the component force in Z direction because of the offset to the actual results. The cutting force and the ball-end milling force coefficients can be given with numerical method. A feedrate optimization strategy is also proposed based on the developed cutting force model and tested effectively.


2009 ◽  
Vol 407-408 ◽  
pp. 408-411
Author(s):  
Chen Zhang

The strategies of selection of feedrate are studied in the ball-end machining process. The optimization algorithm utilizes the objective requirements of a line of NC program to set constraints relation between cutting force and feedrate and optimizes feedrate by controlling the variety ranges of the instantaneous cutting force specified in the cutting forces simulation. Off-line feedrate optimization software for complex sculptured is developed. For a line of NC program, the developed software calculates instantaneous cutting force and an optimization algorithm is used to acquire desired feedrate. The machining experimental results show that the proposed algorithms are satisfying in reduction of machining time and improvement of machining quality.


2006 ◽  
Vol 526 ◽  
pp. 43-48 ◽  
Author(s):  
Han Ul Lee ◽  
Dong Woo Cho

For effective rough milling, an optimized criterion is required to select the feedrate. In this study, a method to obtain the most appropriate reference cutting force for rough milling was developed. The reference cutting force was determined by considering the transverse rupture strength of the tool material and the area of the rupture surface. A finite element method analysis was performed to accurately calculate the area of the rupture surface. Using the analyzed results, the effect of various cutting parameters on the chipping phenomenon was determined. The calculation method for the reference cutting force considered the area of the rupture surface, the effect of the rake angle, and the axial depth of cut. The experimental results clearly show that the reference cutting force obtained from the proposed method met the desired constraints.


2012 ◽  
Vol 426 ◽  
pp. 193-196
Author(s):  
Zi Ye Liu ◽  
Chuan Zhen Huang ◽  
Xin Qiang Zhuang ◽  
Bin Zou ◽  
Han Lian Liu ◽  
...  

An orthogonal test was carried out so as to analyze the cutting force in high speed rough milling with ball-end cutting tools. The wave form of the cutting force components was analyzed. The range analysis was performed to investigate the effect of cutting parameters on the cutting force. The analysis results show that the depth of cut and feed rate have the most significant effect on the resultant force. An empirical equation to describe the resultant cutting force was developed.


Sign in / Sign up

Export Citation Format

Share Document