scholarly journals An experimental study of cutting force dependence on tool condition and cutting parameters in rough milling of Inconel 718 with ceramic inserts

Mechanik ◽  
2015 ◽  
pp. 731/797-731/805
Author(s):  
Joanna Kossakowska ◽  
Zbigniew Siemiątkowski ◽  
Krzysztof Jemielniak
2014 ◽  
Vol 800-801 ◽  
pp. 237-240
Author(s):  
Li Fu Xu ◽  
Ze Liang Wang ◽  
Shu Tao Huang ◽  
Bao Lin Dai

In this paper, the cutting experiment was used to study the influence of various cutting parameters on cutting force when rough turning titanium alloy (TC4) with the whole CBN tool. The results indicate that among the cutting speed, feed rate and cutting depth, the influence of the cutting depth is the most significant on cutting force; the next is the feed rate and the cutting speed is at least.


2015 ◽  
Vol 787 ◽  
pp. 460-464 ◽  
Author(s):  
M. Vignesh ◽  
K. Venkatesan ◽  
R. Ramanujam ◽  
P. Kuppan

Inconel 718, a nickel based alloys, addressed as difficult to cut material because of hard carbide particle, hardness, work hardening and low thermal conductivity. Improving the machinability characteristics of nickel based alloys is a major anxiety in aircraft, space vehicle and other manufacturing fields. This paper presents an experimental investigation in Laser assisted turning of Inconel 718 to determine the effects of laser cutting parameters on cutting temperature and cutting forces. This nickel alloy has a material hardness at 48 HRC and machined with TICN/Al2O3/TiN tool. This is employed for the manufacture of helicopter rotor blades and cryogenic storage tanks. The experiments were conducted at One-Factor-at-a-Time.The effects of laser cutting parameters, namely cutting speed, feed rate, laser power and laser to work piece angle, on the cutting temperature and cutting force components, are critically analysed and the results are compared with unassisted machining of this alloy. The experiments are conducted by varying the cutting speed at three levels (50, 75, 100 m/min), feed rate (0.05, 0.075 0.1 mm/rev), laser power (1.25 kW, 1.5 kW, 1.75 kW) and at two level laser to work piece angle (60, 75°). At the optimal parametric combinationof laser power 1.5 kW with cutting speed of 75m/min, feed rate of 0.075 mm/min and laser to work piece angle 60°, the benefit of LAM was shown by 18%, 25% and 24% decrease in feed force (Fx), thrust force (Fy) and cutting force (Fz) as compared to those of the conventional machining. Examination of the machined surface hardness profiles showed no change under LAM and conventional machining.


2010 ◽  
Vol 431-432 ◽  
pp. 559-563
Author(s):  
Hai Rong Wu ◽  
Guo Qin Huang ◽  
Xi Peng Xu

An experimental study was carried out to investigate the effects of cutting parameters on cutting force and temperature in cutting of hardened W18Cr4V with PCBN cutter. Three components of cutting force were recorded by a strain-gauge dynamometer and the cutting temperature was measured by a nature thermocouple of tool-workpiece. The cutting parameters were arranged by orthogonal method. It is shown that the cutting temperature increased with each of the three cutting parameters and the main effecting factor is feeding speed. The three components of cutting force increased greatly with an increase in feeding speed and cutting depth. But the forces decreased a little as cutting speed increased. The main and axial cutting forces depend mainly on cutting depth whereas the radius force is mainly influenced by feeding speed.


2012 ◽  
Vol 723 ◽  
pp. 317-321
Author(s):  
Yu Wang ◽  
Yuan Sheng Zhai ◽  
Fu Gang Yan ◽  
Xian Li Liu

In this paper, the effect of cutting parameters on cutting force, cutting temperature and surface roughness on cutting force, cutting temperature and surface roughness are experimentally studied in spray cutting GH4169 Ni-base superalloy used carbide cutting tools. The results showed that reasonable choice of cutting parameters can effective reduction of cutting force and cutting temperature, and improve the machining surface roughness. Thus realizing clean production mode.


2014 ◽  
Vol 988 ◽  
pp. 296-299
Author(s):  
Xing Wei Zheng ◽  
Guo Fu Ying ◽  
Jia Lu ◽  
Ni Hong Yang ◽  
Yan Chen ◽  
...  

An experimental study on milling of Invar36 was conducted by using coated carbide insert to characterize the cutting force. The Taugchi's design of experiment was used for experimentation and the cutting force regression equation was established based on the principles of probability statistics and regression analysis. The results showed that the cutting force was significantly affected by the axial depth of cut and the feed per tooth, and with the increase of the axial depth of cut, the cutting force increased very quickly. Compared with the axial depth of cut, radial depth of cut and cutting speed had less influence on the cutting force. The established regression equation was highly reliable.


2010 ◽  
Vol 135 ◽  
pp. 232-237
Author(s):  
G.S. Geng ◽  
Jiu Hua Xu ◽  
Y.C. Fu ◽  
B. Y

Given the stringent operating conditions to which super alloys are subjected to in aerospace, nuclear power and gas turbine industries, their efficient machining and generation of machined surfaces with high integrity assumes a lot of importance. Therefore, this paper presents an experimental investigation on the surface roughness and cutting force of Inconel 718 machined with several different kinds of cutting tools. Both single-factor and orthogonal experiments were carried out with cemented carbide, cermet and CBN tools. The effects of cutting tools and cutting parameters on the surface roughness and cutting force are investigated and the optimal cutting conditions are recommended.


2006 ◽  
Vol 526 ◽  
pp. 43-48 ◽  
Author(s):  
Han Ul Lee ◽  
Dong Woo Cho

For effective rough milling, an optimized criterion is required to select the feedrate. In this study, a method to obtain the most appropriate reference cutting force for rough milling was developed. The reference cutting force was determined by considering the transverse rupture strength of the tool material and the area of the rupture surface. A finite element method analysis was performed to accurately calculate the area of the rupture surface. Using the analyzed results, the effect of various cutting parameters on the chipping phenomenon was determined. The calculation method for the reference cutting force considered the area of the rupture surface, the effect of the rake angle, and the axial depth of cut. The experimental results clearly show that the reference cutting force obtained from the proposed method met the desired constraints.


2012 ◽  
Vol 426 ◽  
pp. 193-196
Author(s):  
Zi Ye Liu ◽  
Chuan Zhen Huang ◽  
Xin Qiang Zhuang ◽  
Bin Zou ◽  
Han Lian Liu ◽  
...  

An orthogonal test was carried out so as to analyze the cutting force in high speed rough milling with ball-end cutting tools. The wave form of the cutting force components was analyzed. The range analysis was performed to investigate the effect of cutting parameters on the cutting force. The analysis results show that the depth of cut and feed rate have the most significant effect on the resultant force. An empirical equation to describe the resultant cutting force was developed.


Sign in / Sign up

Export Citation Format

Share Document