COVID-19 pandemic deep learning implementations of prediction of disease with data analysis and real-time face-mask detection with camera

Author(s):  
Amrut Khatavkar ◽  
Namit Kharade ◽  
Geeta Navale ◽  
Tanaji Khadtare
2021 ◽  
Vol 1916 (1) ◽  
pp. 012077
Author(s):  
M Sujaritha ◽  
S Kabilan ◽  
M Manikandan ◽  
S Nanda Kisore
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Sharnil Pandya ◽  
Anirban Sur ◽  
Nitin Solke

The presented deep learning and sensor-fusion based assistive technology (Smart Facemask and Thermal scanning kiosk) will protect the individual using auto face-mask detection and auto thermal scanning to detect the current body temperature. Furthermore, the presented system also facilitates a variety of notifications, such as an alarm, if an individual is not wearing a mask and detects thermal temperature beyond the standard body temperature threshold, such as 98.6°F (37°C). Design/methodology/approach—The presented deep Learning and sensor-fusion-based approach can also detect an individual in with or without mask situations and provide appropriate notification to the security personnel by raising the alarm. Moreover, the smart tunnel is also equipped with a thermal sensing unit embedded with a camera, which can detect the real-time body temperature of an individual concerning the prescribed body temperature limits as prescribed by WHO reports. Findings—The investigation results validate the performance evaluation of the presented smart face-mask and thermal scanning mechanism. The presented system can also detect an outsider entering the building with or without mask condition and be aware of the security control room by raising appropriate alarms. Furthermore, the presented smart epidemic tunnel is embedded with an intelligent algorithm that can perform real-time thermal scanning of an individual and store essential information in a cloud platform, such as Google firebase. Thus, the proposed system favors society by saving time and helps in lowering the spread of coronavirus.


Author(s):  
Seonho Kim ◽  
Jungjoon Kim ◽  
Hong-Woo Chun

Interest in research involving health-medical information analysis based on artificial intelligence, especially for deep learning techniques, has recently been increasing. Most of the research in this field has been focused on searching for new knowledge for predicting and diagnosing disease by revealing the relation between disease and various information features of data. These features are extracted by analyzing various clinical pathology data, such as EHR (electronic health records), and academic literature using the techniques of data analysis, natural language processing, etc. However, still needed are more research and interest in applying the latest advanced artificial intelligence-based data analysis technique to bio-signal data, which are continuous physiological records, such as EEG (electroencephalography) and ECG (electrocardiogram). Unlike the other types of data, applying deep learning to bio-signal data, which is in the form of time series of real numbers, has many issues that need to be resolved in preprocessing, learning, and analysis. Such issues include leaving feature selection, learning parts that are black boxes, difficulties in recognizing and identifying effective features, high computational complexities, etc. In this paper, to solve these issues, we provide an encoding-based Wave2vec time series classifier model, which combines signal-processing and deep learning-based natural language processing techniques. To demonstrate its advantages, we provide the results of three experiments conducted with EEG data of the University of California Irvine, which are a real-world benchmark bio-signal dataset. After converting the bio-signals (in the form of waves), which are a real number time series, into a sequence of symbols or a sequence of wavelet patterns that are converted into symbols, through encoding, the proposed model vectorizes the symbols by learning the sequence using deep learning-based natural language processing. The models of each class can be constructed through learning from the vectorized wavelet patterns and training data. The implemented models can be used for prediction and diagnosis of diseases by classifying the new data. The proposed method enhanced data readability and intuition of feature selection and learning processes by converting the time series of real number data into sequences of symbols. In addition, it facilitates intuitive and easy recognition, and identification of influential patterns. Furthermore, real-time large-capacity data analysis is facilitated, which is essential in the development of real-time analysis diagnosis systems, by drastically reducing the complexity of calculation without deterioration of analysis performance by data simplification through the encoding process.


Author(s):  
Ismail Nasri ◽  
Mohammed Karrouchi ◽  
Hajar Snoussi ◽  
Abdelhafid Messaoudi ◽  
Kamal Kassmi

2021 ◽  
Vol 38 (6) ◽  
pp. 1875-1885
Author(s):  
Ruchi Jayaswal ◽  
Manish Dixit

A novel coronavirus has spread over the world and has become an outbreak. This, according to a WHO report, is an infectious disease that aims to spread. As a consequence, taking precautions is the only method to avoid catching this virus. The most important preventive measure against COVID-19 is to wear a mask. In this paper, a framework is designed for face mask detection using a deep learning approach. This paper aims to predict a person having a mask or unmask and also presents a proposed dataset named RTFMD (Real-Time Face Mask Dataset) to accomplish this objective. We have also taken the RFMD dataset from the internet to analyze the performance of system. Contrast Limited Adaptive Histogram Equalization (CLAHE) technique is applied at the time of pre-processing to enhance the visual quality of images. Subsequently, Inceptionv3 model used to train the face mask images and SSD face detector model has been used for face detection. Therefore, this paper proposed a model CLAHE-SSD_IV3 to classify the mask or without mask images. The system is also tested at VGG16, VGG19, Xception, MobilenetV2 models at different hyperparameters values and analyze them. Furthermore, compared the result of the proposed dataset RTFMD with the RFMD dataset. Additionally, proposed approach is compared with the existing approach on Face Mask dataset and RTFMD dataset. The outcomes have obtained 98% test accuracy on this proposed dataset RTFMD while 97% accuracy on the RFMD dataset in real-time.


2021 ◽  
Vol 19 (6) ◽  
pp. 994-1001
Author(s):  
Diego Gonzalez Dondo ◽  
Javier Andres Redolfi ◽  
R. Gaston Araguas ◽  
Daiana Garcia

2021 ◽  
Vol 12 (1) ◽  
pp. 25-31
Author(s):  
Pranad Munjal ◽  
Vikas Rattan ◽  
Rajat Dua ◽  
Varun Malik

The outbreak of COVID-19 has taught everyone the importance of face masks in their lives. SARS-COV-2(Severe Acute Respiratory Syndrome) is a communicable virus that is transmitted from a person while speaking, sneezing in the form of respiratory droplets. It spreads by touching an infected surface or by being in contact with an infected person. Healthcare officials from the World Health Organization and local authorities are propelling people to wear face masks as it is one of the comprehensive strategies to overcome the transmission. Amid the advancement of technology, deep learning and computer vision have proved to be an effective way in recognition through image processing. This system is a real-time application to detect people if they are wearing a mask or are without a mask. It has been trained with the dataset that contains around 4000 images using 224x224 as width and height of the image and have achieved an accuracy rate of 98%. In this research, this model has been trained and compiled with 2 CNN for differentiating accuracy to choose the best for this type of model.It can be put into action in public areas such as airports, railways, schools, offices, etc. to check if COVID-19 guidelines are being adhered to or not.


Sign in / Sign up

Export Citation Format

Share Document