Proof of Concept for Three-Phase Extension of a Mains Frequency Estimation Algorithm

Author(s):  
Jan-Philipp Kitzig ◽  
Gerd Bumiller
Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1327 ◽  
Author(s):  
Thiago Soares ◽  
Ubiratan Bezerra ◽  
Maria Tostes

This paper proposes the development of a three-phase state estimation algorithm, which ensures complete observability for the electric network and a low investment cost for application in typical electric power distribution systems, which usually exhibit low levels of supervision facilities and measurement redundancy. Using the customers´ energy bills to calculate average demands, a three-phase load flow algorithm is run to generate pseudo-measurements of voltage magnitudes, active and reactive power injections, as well as current injections which are used to ensure the electrical network is full-observable, even with measurements available at only one point, the substation-feeder coupling point. The estimation process begins with a load flow solution for the customers´ average demand and uses an adjustment mechanism to track the real-time operating state to calculate the pseudo-measurements successively. Besides estimating the real-time operation state the proposed methodology also generates nontechnical losses estimation for each operation state. The effectiveness of the state estimation procedure is demonstrated by simulation results obtained for the IEEE 13-bus test network and for a real urban feeder.


2010 ◽  
Vol 59 (7) ◽  
pp. 1793-1802 ◽  
Author(s):  
Mohsen Mojiri ◽  
Davood Yazdani ◽  
Alireza Bakhshai

Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 329
Author(s):  
Jiufei Luo ◽  
Haitao Xu ◽  
Kai Zheng ◽  
Xinyi Li ◽  
Song Feng

Asymmetric windows are of increasing interest to researchers because of the nonlinear and adjustable phase response, as well as alterable time delay. Short-time phase distortion can provide an essential improvement in speech coding, and also has better performance in speech recognition. The merits of asymmetric windows in the aspect of spectral behaviors have an important function in frequency component detection and parameter estimation. In this paper, the phase response of windows were further studied, and the phase characteristics of symmetric and asymmetric windows are described. The relationship between the barycenter of windows in the time domain, and the phase characteristic at the center of the main lobe in the frequency domain, was established. In light of the relationship, an improved version of the asymmetric window- based frequency estimation algorithm was proposed. The improved algorithm has advantages of straightforward implementation and computational efficiency. The numeric simulation results also indicate that the improved approach is more robust than the traditional method against additive random noise.


2018 ◽  
Vol 18 (1) ◽  
pp. 35 ◽  
Author(s):  
Rofiatul Izah ◽  
Subiyanto Subiyanto ◽  
Dhidik Prastiyanto

Synchronous Reference Frame Phase Locked Loop (SRF PLL) has been widely used for synchronization three-phase grid-connected photovoltaic (PV) system. On the grid fault, SRF PLL distorted by negative sequence component and grid harmonic that caused an error in estimating parameter because of ripple and oscillation. This work combined SRF PLL with Dual Second Order Generalized Integrator (DSOGI) and filter to minimize ripple and minimize oscillation in the phase estimation and frequency estimation. DSOGI was used for filtering and obtaining the 90o shifted versions from the vαβ signals. These signals (vαβ) were generated from three phase grid voltage signal using Clarke transform. The vαβ signal was the inputs to the positive-sequence calculator (PSC). The positive-sequence vαβ was transformed to the dq synchronous reference frame and became an input to SRF-PLL to create the estimation frequency. This estimation frequency from SRF PLL was filtered by the low-pass filter to decrease grid harmonic. Moreover, the output of low-pass filter was a frequency adaptive. The performance of DSOGI PLL with filter is compared with DSOGI PLL, SRF PLL, and IEEE standard 1547(TM)-2003. The improvement of DSOGI PLL with filter gave better performances than DSOGI PLL and SRF PLLbecause it minimized ripples and oscillations in the phase and frequency estimations.


Sign in / Sign up

Export Citation Format

Share Document