Multi frequency circular patch antenna with slit for modern communication systems

Author(s):  
Pratibha Sekra ◽  
Vijay Sharma ◽  
D. Bharadwaj ◽  
D. Bhatnagar ◽  
V.K. Saxena ◽  
...  
Author(s):  
Rashedul Islam ◽  
Fardeen Mahbub ◽  
Shouherdho Banerjee Akash ◽  
Imtiaz Ahmed Prince ◽  
Farhan Tasnim ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yao Chen ◽  
Longfang Ye ◽  
Jianliang Zhuo ◽  
Yanhui Liu ◽  
Liang Zhang ◽  
...  

In this paper, a compact frequency reconfigurable circular patch antenna with an arc-shaped slot loaded in the ground layer is proposed for multiband wireless communication applications. By controlling the ON/OFF states of the five PIN diodes mounted on the arc-shaped slot, the effective length of the arc-shaped slot and the effective length of antennas current are changed, and accordingly six-frequency band reconfiguration can be achieved. The simulated and measured results show that the antenna can operate from 1.82 GHz to 2.46 GHz, which is located in DCS1800 (1.71–1.88 GHz), UMTS (2.11–2.20 GHz), WiBro (2.3–2.4 GHz), and Bluetooth (2.4–2.48 GHz) frequency bands and so forth. Compared to the common rectangular slot circular patch antenna, the proposed arc-shaped slot circular patch antenna not only has a better rotational symmetry with the circular patch and substrate but also has more compact size. For the given operating frequency at 1.82 GHz, over 55% area reduction is achieved in this design with respect to the common design with rectangular slot. Since the promising frequency reconfiguration, this antenna may have potential applications in modern multiband and multifunctional mobile communication systems.


Author(s):  
A. H. Majeed ◽  
K. H. Sayidmarie

<p>This paper presents a new wideband microstrip circular patch antenna (MCPA) fed by proximity-coupled line with double-stub matching to achieve dual-band operation. Bandwidth extension is achieved by exciting higher-order modes in the circular radiating patch, and using two stubs to achieve adequate matching across the obtained two bands. The characteristics of the antenna such as reflection coefficient, impedance bandwidth, gain and radiation pattern are investigated and optimized through parametric studies using the CST Microwave Studio Suite. The antenna achieved a large relative bandwidth of 45.16% at the upper band, while the lower one has 10.3% relative bandwidth. The maximum achieved gain of the dual-band antenna in the 5.8GHz band is 4.62dBi while it is 4.85dBi in the upper band. The antenna has an overall size of 30×30×3.2mm3 corresponding to 0.58λ × 0.58 λ × 0.062 λ at the lower band of 5.8 GHz. The proposed antenna should be useful for WLAN and X-band communication systems.</p>


Author(s):  
Peng Liu ◽  
Wen Jiang ◽  
Wei Hu ◽  
Shang-Yi Sun ◽  
Shu-Xi Gong

Sign in / Sign up

Export Citation Format

Share Document