The recognition of moving human body posture based on combined neural network

Author(s):  
Hexi Li ◽  
Qilin Sun
Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 537 ◽  
Author(s):  
Jiyuan Song ◽  
Aibin Zhu ◽  
Yao Tu ◽  
Yingxu Wang ◽  
Muhammad Affan Arif ◽  
...  

Aiming at the requirement of rapid recognition of the wearer’s gait stage in the process of intelligent hybrid control of an exoskeleton, this paper studies the human body mixed motion pattern recognition technology based on multi-source feature parameters. We obtain information on human lower extremity acceleration and plantar analyze the relationship between these parameters and gait cycle studying the motion state recognition method based on feature evaluation and neural network. Based on the actual requirements of exoskeleton per use, 15 common gait patterns were determined. Using this, the studies were carried out on the time domain, frequency domain, and energy feature extraction of multi-source lower extremity motion information. The distance-based feature screening method was used to extract the optimal features. Finally, based on the multi-layer BP (back propagation) neural network, a nonlinear mapping model between feature quantity and motion state was established. The experimental results showed that the recognition accuracy in single motion mode can reach up to 98.28%, while the recognition accuracy of the two groups of experiments in mixed motion mode was found to be 92.7% and 97.4%, respectively. The feasibility and effectiveness of the model were verified.


2018 ◽  
Author(s):  
Qi Zhao ◽  
Qian Mao ◽  
Zheng Zhao ◽  
Tongyi Dou ◽  
Zhiguo Wang ◽  
...  

AbstractBackgroundAn increasing number of studies reported that exogenous miRNAs (xenomiRs) can be detected in animal bodies, however, some others reported negative results. Some attributed this divergence to the selective absorption of plant-derived xenomiRs by animals.ResultsHere, we analyzed 166 plant-derived xenomiRs reported in our previous study and 942 non-xenomiRs extracted from miRNA expression profiles of four species of commonly consumed plants. Employing statistics analysis and cluster analysis, our study revealed the potential sequence specificity of plant-derived xenomiRs. Furthermore, a random forest model and a one-dimensional convolutional neural network model were trained using miRNA sequence features and raw miRNA sequences respectively and then employed to predict unlabeled plant miRNAs in miRBase. A total of 241 possible plant-derived xenomiRs were predicted by both models. Finally, the potential functions of these possible plant-derived xenomiRs along with our previously reported ones in human body were analyzed.ConclusionsOur study, for the first time, presents the systematic plant-derived xenomiR sequences analysis and provides evidence for selective absorption of plant miRNA by human body, which could facilitate the future investigation about the mechanisms underlying the transference of plant-derived xenomiR.


Sign in / Sign up

Export Citation Format

Share Document