LTCC based patch antenna for biomedical applications at ISM band

Author(s):  
AbdElrahman Mohamed ◽  
Mohammad Sharawi
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 43547-43554 ◽  
Author(s):  
Kumar Naik Ketavath ◽  
Dattatreya Gopi ◽  
Sriram Sandhya Rani

2021 ◽  
Author(s):  
Majedeh Seydi ◽  
Mohammad Sajjad Bayati

Abstract A rectangular meandering-microstrip patch antenna (RM-MPA) with shorting pin for implant antenna and biomedical applications at industrial, scientific, and medical (ISM) band is proposed. The rectangular patch has length of l =14 mm and width of w =9.4 mm. The substrate and superstrate are made of Rogers 3210 with dielectric constant equals 10.2. The RMMPA is placed between the substrate and superstrate dielectric layers whose same thickness equals 0.635 mm. The proposed antenna is fed by a 50-ohm coaxial probe, at the centre of the length and edge of the width of the patch. The input impedance of patch antenna varies with the patch geometry. Thus, the geometry of the patch changed to achieve impedance matching at ISM band. The rectangular patch divided to three sections along width for meandering. The resonance frequency is tuned by meandering each section. The proposed antenna is simulated in free space and skin phantom. Proposed antenna has efficiency of 90%, bandwidth 1.02%. Both radiation pattern and SAR are evaluated which SAR level is below the safety and satisfies SAR standards. Finally, the antenna is tested in minced meat and tissue liquid.


2020 ◽  
Vol 68 (3) ◽  
pp. 2399-2404 ◽  
Author(s):  
Zhan Xia ◽  
Hua Li ◽  
Zongze Lee ◽  
Shaoqiu Xiao ◽  
Wei Shao ◽  
...  

Author(s):  
Ahmed Z. A. Zaki ◽  
Ehab K. I. Hamad ◽  
Tamer Gaber Abouelnaga ◽  
Hala A. Elsadek

Abstract In this paper, an ultra-compact implantable antenna for biomedical applications is proposed. The proposed implanted meandered compact patch antenna is implanted inside the body at a depth of 2 mm. The proposed antenna was designed with Roger RO3003 (ɛr = 3) as substrate with an overall size of dimensions 5 × 5 × 0.26 mm3. The radiating element is a square patch antenna with different size rectangular slots and coaxial feeding. The proposed implantable antenna resonates at 2.45 GHz (from 2.26 to 2.72 GHz) frequency with a bandwidth of 460 MHz and a gain of −22.6 dB. The specific absorption rate has been considered for health care considerations, and the result is within the limits of the federal communication commission. The measured and simulated scattering parameters are compared, and good agreements are achieved. The proposed antenna is simulated and investigated for biomedical applications suitability.


2013 ◽  
Vol 6 (1) ◽  
pp. 101-107
Author(s):  
Srinivasan Ashok Kumar ◽  
Thangavelu Shanmuganantham

Implantable antennas have recently been receiving substantial attention for medical diagnosis and treatment. In this paper, a coplanar waveguide-fed monopole antenna for industrial, scientific, and medical (ISM) band biomedical applications is proposed. The antenna has a simple structure is placed on human tissues such as muscle, fat, and skin. The designed antenna is made compatible for implantation by embedding it in an FR4 substrate. The proposed antenna is simulated using the method of moment's software IE3D by assuming the predetermined dielectric constant for the human muscle tissue, fat, and skin. The antenna operates in the frequency of ISM bands, 2.4–2.48 GHz. Simulated and measured gains attain −7.7 and −8 dBi in the frequency of 2.45 GHz. The radiation pattern, return loss, current distribution, and gain of these antennas were examined and characterized.


2013 ◽  
Vol 6 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Srinivasan Ashok Kumar ◽  
Thangavelu Shanmuganantham

A novel coplanar waveguide fed Industrial, Scientific, and Medical (ISM) band implantable crossed-type triangular slot antenna is proposed for biomedical applications. The antenna operates at the center frequency of 2450 MHz, which is in ISM band, to support GHz wideband communication for high-data rate implantable biomedical application. The size of the antenna is 78 mm3 (10 mm × 12 mm × 0.65 mm). The simulated and measured bandwidths are 7.9 and 8.2% at the resonant frequency of 2.45 GHz. The specific absorption rate distribution induced by the implantable antenna inside a human body tissue model is evaluated. The communication between the implanted antenna and external device is also examined. The proposed antenna has substantial merits such as miniaturization, lower return loss, better impedance matching, and high gain over other implanted antennas.


2015 ◽  
Vol 16 (5) ◽  
pp. 250-253 ◽  
Author(s):  
S. Ashok Kumar ◽  
J. Navin Sankar ◽  
D. Dileepan ◽  
T. Shanmuganantham

Sign in / Sign up

Export Citation Format

Share Document