Multiple-element PIFA MIMO antenna system design for future 5G wireless communication applications

Author(s):  
Bazilah Baharom ◽  
Mohd Tarmizi Ali
Author(s):  
Nur Zafirah Bt Muhammad Zubir Et.al

A wideband multiple-input-multiple-output (MIMO) antenna system with common elements suitable for SCADA wireless communication backhaul application which is operating frequency of 0.85-2.6GHz that can cover global system for mobile communication (GSM) 900MHz and 1.8GHz, The Universal Mobile Telecommunication System (UMTS) 2GHz, Wi-Fi (2.4GHz) and Long Term Evolution (LTE) 2.6GHz is proposed. The proposed MIMO antenna system consists of four microstrip feedline with common radiating element and a frame shaped ground plane. A single port antenna also was designed and presented in this paper to show the process to design wideband MIMO antenna structure. The radiator of the MIMO antenna system is designed as the shape of modified rectangle with straight line at each corner to enhance the bandwidth frequency. To improve the isolation between ports, the ground plane is modified by inserting four L-slots in each corner to reduce mutual coupling. For an antenna efficiency of more than 60%, the simulated reflection coefficients are below -10dB for all ports at expected frequency. Simulated isolation is achieved greater than -10dB by using a modified ground plane. Also, a low envelope correlation coefficient (ECC) less than 0.1 and polarization diversity gain of about 10dB with the orthogonal mode of linear polarization and omnidirectional pattern during the analysis of the radiation characteristic are achieved. Therefore, the proposed design can be used for SCADA wireless communication backhaul application.


Author(s):  
Nassrin Elamin ◽  
Tharek Rahman

The wireless communication high data rate is achievable by installing more than one antenna in receiver and transmitter terminals as MIMO antenna. In order to obtain the MIMO gain (Envelope Correlation Coefficient (ECC) = 0.5), the antenna elements must be at least separated by a distance of 0.5? (? is the operating wavelength of 0.7~3.8 GHz which is the frequency range of most of the current wireless communication applications). This value is big relative to limited sizes devices. A practical MIMO antenna should have a low signal correlation between the antenna elements and good matching features for input impedance. Moreover, MIMO system performance can be improved by reducing mutual coupling between closely spaced antenna elements. Miniature high isolated MIMO antenna system has been presented in this chapter; also many MIMO antenna systems were analyzed and categorized based on the implemented isolation techniques. Furthermore several MIMO antenna evaluation methods have been discussed.


Author(s):  
Eva Rajo-Iglesias ◽  
Mohammad S. Sharawi

Multiple-Input-Multiple-Output (MIMO) technology has appeared to overcome the data throughput limit faced by conventional Single-Input-Single-Output (SISO) wireless communication systems. In MIMO, a significant increase in the data throughput is obtained using multiple data streams sent and received by multiple antenna elements on the transmitter and receiver ends, and this is why fourth generation (4G) wireless systems are supporting more real time multimedia applications and videos compared to older generations. The design of MIMO antenna systems is not a trivial task, and needs careful design practices. Several performance metrics have been identified for MIMO antenna systems that need to be evaluated on top of the conventional single element antenna systems. In this chapter, we will start by giving a brief background on wireless systems evolution and then highlighting the advantages of MIMO technology and its use in current 4G and future 5G wireless communication standards. The second section will treat in detail the various performance metrics that are needed to evaluate the behavior of a MIMO antenna system. The new metrics that are required for MIMO performance characterization such as the total active reflection coefficient (TARC) for multi-port antenna systems, correlation coefficient, diversity gain and channel capacity evaluation will be discussed in details. Several examples of single-band and Multi-band MIMO antenna systems are considered next with various types of antenna elements and covering a variety of wireless applications and device sizes. The chapter ends with a discussion on some of the challenges encountered in the design of MIMO antennas.


Author(s):  
Sumon Modak ◽  
Taimoor Khan

Abstract This study presents a novel configuration of a cuboidal quad-port ultra-wideband multiple-input and multiple-output antenna with WLAN rejection characteristics. The designed antenna consists of four F-shaped elements backed by a partial ground plane. A 50 Ω microstrip line is used to feed the proposed structure. The geometry of the suggested antenna exhibits an overall size of 23 × 23 × 19 mm3, and the antenna produces an operational bandwidth of 7.6 GHz (3.1–10.7 GHz). The notched band characteristic at 5.4 GHz is accomplished by loading a pair of spiral electromagnetic bandgap structures over the ground plane. Besides this, other diversity features such as envelope correlation coefficient, and diversity gain are also evaluated. Furthermore, the proposed antenna system provides an isolation of −15 dB without using any decoupling structure. Therefore, to validate the reported design, a prototype is fabricated and characterized. The overall simulated performance is observed in very close agreement with it's measured counterpart.


Sign in / Sign up

Export Citation Format

Share Document