Closed-Loop Control Method and Implementation of Selective Harmonic Type Active Power Filters

Author(s):  
Xiaodan Wang ◽  
Xizheng Guo ◽  
Fuzhong Wang
2009 ◽  
Vol 628-629 ◽  
pp. 257-262 ◽  
Author(s):  
Tong Xing

The cutter head drive hydraulic system of φ1.8m simulate shield machine is introduced in this article, which has the variable speed pump control technique and the closed loop control method. The AMESim simulation model of the hydraulic system is built up, and the efficiency of the hydraulic system, speed control performance by open loop and closed loop control are analyzed. The result of the simulation shows that the variable speed pump control system has higher efficiency than the variable displacement pump control system about 4%-26% in the same condition when the cutter head speed is at the range of 0.5-4r/min, and the hydraulic system has good dynamic characteristics in closed-loop PID control.


2016 ◽  
Author(s):  
Insoo Jung ◽  
Jaemin Jin ◽  
Dongchul Lee ◽  
Seunghyun Lee ◽  
Seungwook Yang ◽  
...  

2011 ◽  
Vol 268-270 ◽  
pp. 428-433
Author(s):  
Chen Guo ◽  
Cun Bing Gui ◽  
Zhong Ren Chen

This paper researches control problem for active power filters with three-level NPC inverter and proposes a novel PI control algorithm for tracking harmonic command current. This novel PI control algorithm can suppress the periodic error in the whole system to achieve zero steady error tracking. In this scheme, the state variables are estimated with a state observer to cancel the delay of one sampling period in this digital control system. Harmonic current is predicted with a repetitive algorithm simultaneity, which makes use of the repetitive nature of load current. The controller is analyzed and designed in the paper, and the experiment results illustrate that this APF can be controlled in a satisfactory way.


2005 ◽  
Vol 17 (01) ◽  
pp. 19-26 ◽  
Author(s):  
CHENG-LIANG LIU ◽  
CHUNG-HUANG YU ◽  
SHIH-CHING CHEN ◽  
CHANG-HUNG CHEN

Functional electrical stimulation (FES) is a method for restoring the functional movements of paraplegic or patients with spinal cord injuries. However, the selection of parameters that control the restoration of standing up and sitting functions has not been extensively investigated. This work provides a method for choosing the four main items involved in evaluating the strategies for sit-stand-sit movements with the aid of a modified walker. The control method uses the arm-supported force and the angles of the legs as feedback signals to change the intensity of the electrical stimulation of the leg muscles. The control parameters, Ki and Kp, are vary for different control strategies. Four items are collected through questionnaires and used for evaluation. They are the maximum reactions of the two hands, the average reaction of the two hands, largest absolute angular velocity of the knee joints, and the sit-stand-sit duration time. The experimental data are normalized to facilitate comparison. Weighting factors are obtained and analyzed from questionnaires answered by experts and are added to evaluation process for manipulation. The results show that the best strategy is the closed-loop control with parameters Ki=0.5 and Kp=0.


Sign in / Sign up

Export Citation Format

Share Document