Optimal scheduling of hydrogen energy storage integrated energy system based on Mixed Integer Second-order Cone

Author(s):  
Lixin Wan ◽  
Wei Zhang ◽  
ZhiPeng Xu
Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Hanlin Dong ◽  
Zhijian Fang ◽  
Al-wesabi Ibrahim ◽  
Jie Cai

This research proposes an optimization technique for an integrated energy system that includes an accurate prediction model and various energy storage forms to increase load forecast accuracy and coordinated control of various energies in the current integrated energy system. An artificial neural network is utilized to create an accurate short-term load forecasting model to effectively predict user demand. The 0–1 mixed integer linear programming approach is used to analyze the optimal control strategy for multiple energy systems with storage, cold energy, heat energy, and electricity to solve the problem of optimal coordination. Simultaneously, a precise load forecasting method and an optimal scheduling strategy for multienergy systems are proposed. The equipment scheduling plan of the integrated energy system of gas, heat, cold, and electricity is proposed after researching the operation characteristics and energy use process of the equipment in the combined power supply system. A system economic operation model is created with profit maximization in mind, while also taking into account energy coordination between energy and the power grid. The rationality of the algorithm and model is verified by analyzing the real data of a distributed energy station in Wuhan for two years.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3964 ◽  
Author(s):  
Quanming Zhang ◽  
Zhichao Ren ◽  
Ruiguang Ma ◽  
Ming Tang ◽  
Zhongxiao He

With the wide application of multi-energy storage technology in the regional integrated energy system, the configuration of multi-energy storage devices is expected to enhance the economic benefits of regional integrated energy systems. To start with, in this paper, the basic framework of the regional integrated energy system is constructed, and a mathematical model of micro-gas turbine, gas boiler, distributed wind power and multi-energy storage device is established. Then, the multi-energy storage and double-layer planning configuration model with multi-energy complementation is established. The upper level of the model aims to minimize the comprehensive investment cost of multi-energy storage, while the lower level of the model aims to minimize the comprehensive systematic operating cost, in which the net losses cost is also included and the required multi-energy storage capacity from the upper level is set as its constraint. During the programming and problem solving, the second-order conic relaxation technology is introduced to realize the convex relaxation for power flow constraint. At the same time, the piecewise linearization method is adopted to deal with the natural gas pipeline flow constraint, which can convert the original model into a mixed integer programming problem. In the end, the example analysis is carried out in the IEEE 33-bus system and the improved 6-node natural gas system. The results show that the multi-energy storage technology can improve the economics of the regionally integrated energy system to a certain extent, and have verified the validity of the model.


Energies ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 195 ◽  
Author(s):  
Hengrui Ma ◽  
Bo Wang ◽  
Wenzhong Gao ◽  
Dichen Liu ◽  
Yong Sun ◽  
...  

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 138260-138272 ◽  
Author(s):  
Xu Zhu ◽  
Jun Yang ◽  
Yuan Liu ◽  
Chang Liu ◽  
Bo Miao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document