scholarly journals Synthesis of nonuniformly spaced linear array for GSM/DCS/WCDMA base station application using genetic algorithm

Author(s):  
An-Shyi Liu ◽  
Ruey-Beei Wu ◽  
Yi-Chen Lin ◽  
Hsueh-Jyh Li
Author(s):  
Bachujayendra Kumar ◽  
Rajya Lakshmidevi K ◽  
M Verginraja Sarobin

Wireless sensor networks (WSNs) have been used widely in so many applications. It is the most efficient way to monitor the information. There areso many ways to deploy the sensors. Many problems are not identified and solved. The main challenge of WSN is energy efficiency and information security. WSN power consumption is reduced by genetic algorithm-based clustering algorithm. Information from cluster head to base station may have a lot of chances to get hacked. The most reliable way to manage energy consumption is clustering, and encryption will suit best for information security. In this paper, we explain clustering techniques and a new algorithm to encrypt the data in the network.


Author(s):  
Yusnita Rahayu ◽  
Indah Permata Sari ◽  
Dara Incam Ramadhan ◽  
Razali Ngah

This article presented a millimeter wave antenna which operated at 38 GHz for 5G mobile base station. The MIMO (Multiple Input Multiple Output) antenna consisted of 1x10 linear array configurations. The proposed antenna’s size was 88 x 98 mm^2  and printed on 1.575 mm-thick Rogers Duroid 5880 subsrate with dielectric constant of ε_r= 2.2 and loss tangent (tanδ) of 0.0009. The antenna array covered along the azimuth plane to provide the coverage to the users in omnidirection. The simulated results showed that the single element antenna had the reflection coefficient (S11) of -59 dB, less than -10 dB in the frequency range of 35.5 - 39.6 GHz. More than 4.1 GHz of impedance bandwidth was obtained. The gain of the antenna linear array was 17.8 dBi while the suppression of the side lobes was -2.7 dB.  It showed a high array gain throughout the impedance bandwidth with overall of VSWR were below 1.0646. It designed using CST microwave studio.


2003 ◽  
Vol 20 (1) ◽  
pp. 78-80
Author(s):  
Ying Liu ◽  
Antao Bu ◽  
Shuxi Gong ◽  
Zongzhen Shen ◽  
Liangyong Xiao

2010 ◽  
Vol 34-35 ◽  
pp. 1019-1023
Author(s):  
Zhao Feng Yang ◽  
Ai Wan Fan

Wireless sensor networks consist of hundreds or thousands of sensor nodes that involve numerous restrictions including computation capability and battery capacity. In this paper we propose an optimal algorithm with genetic algorithm taken into consideration, and compare it with three well known and widely used approaches, i.e., LEACH and LEACH-C, in performance evaluation. Experimental results show that the proposed approach increases the overall network lifetime, and data delivery at the base station than the other routing protocols. Key words: Wireless sensor networks, base station, heuristic optimized genetic algorithm, low energy adaptive clustering hierarchy


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Sarayoot Todnatee ◽  
Chuwong Phongcharoenpanich

This research has proposed the iterative genetic algorithm (GA) optimization scheme to synthesize the radiation pattern of an aperiodic (nonuniform) linear array antenna. The aim of the iterative optimization is to achieve a radiation pattern with a side lobe level (SLL) of ≤−20 dB. In the optimization, the proposed scheme iteratively optimizes the array range (spacing) and the number of array elements, whereby the array element with the lowest absolute complex weight coefficient is first removed and then the second lowest and so on. The removal (the element reduction) is terminated once the SLL is greater than −20 dB (>−20 dB) and the elemental increment mechanism is triggered. The results indicate that the proposed iterative GA optimization scheme is applicable to the nonuniform linear array antenna and also is capable of synthesizing the radiation pattern with SLL ≤ −20 dB.


Sign in / Sign up

Export Citation Format

Share Document