A measurement method for verifying impedance match condition of assembled RFID tag

Author(s):  
Sung-Lin Chen ◽  
Ken-Huang Lin
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Abubakar Sharif ◽  
Jun Ouyang ◽  
Feng Yang ◽  
Rui Long ◽  
Muhammad Kamran Ishfaq

Radio frequency identification (RFID) is a key technology to realize IoT (Internet of Things) dreams. RFID technology has been emerging in sensing, identification, tracking, and localization of goods. In order to tag a huge number of things, it is cost-effective to use one RFID antenna for tagging different things. Therefore, in this paper a platform tolerant RFID tag antenna with tunable capability is proposed. The proposed tag antenna is designed and optimized using characteristic mode analysis (CMA). Moreover, this tag antenna consists of a folded patch wrapped around FR 4 substrate and a feeding loop element printed on a paper substrate. The inductive feeding loop is stacked over folded patch and it provides impedance match with RFID chip. Because of separate radiating and feeding element, this tag antenna has a versatility of impedance matching with any RFID chip. Furthermore, this tag is able to cover American RFID band (902–928 MHz) and can be tuned to European RFID band (865–868 MHz) by adding tunable strips. In order to demonstrate platform tolerant operation, the read range of RFID tag is measured by mounting it on different materials. The maximum read range of RFID tag is 4.5 m in free space or on dielectrics and 6.5 m above 200 × 200 mm2 metal plate, respectively.


Author(s):  
Bo Tao ◽  
Hu Sun ◽  
Jixuan Zhu ◽  
Zhouping Yin

Anti-metallic passive RFID tags play a key role in manufacturing automation systems adopting RFID techniques, such as manufacturing tool management, logistics and process control. A novel long range passive anti-metallic RFID tag fabrication method is proposed in this chapter, in which a multi-strip High Impendence Surface (HIS) with a feeding loop is designed as the antenna radiator. Firstly, the bandwidth enhancement methods for passive RFID tags based on micro strips are discussed. Then, a RFID tag design based on multi-strip antenna is proposed and its radiation efficiency is analyzed. After that, some key parameters of the RFID antenna proposed are optimized from the viewpoint of radiation efficiency and impedance match performance. Targeted for manufacturing plants with heavy metallic interfering, the proposed RFID tag can significantly enhance the radiation efficiency to improve the reading range as well as the bandwidth. Finally, some RFID tag prototypes are fabricated and tested to verify their performance and applicability against metallic environment, and the experimental results show that these fabricated RFID tags have outstanding reading performance and can be widely used in manufacturing plant full of heave metallic interfering.


2015 ◽  
Vol 6 (4) ◽  
pp. 171-184
Author(s):  
Liangbo Xie ◽  
Jiaxin Liu ◽  
Yao Wang ◽  
Chuan Yin ◽  
Guangjun Wen

2020 ◽  
pp. 35-42
Author(s):  
Yuri P. Zarichnyak ◽  
Vyacheslav P. Khodunkov

The analysis of a new class of measuring instrument for heat quantities based on the use of multi-valued measures of heat conductivity of solids. For example, measuring thermal conductivity of solids shown the fallacy of the proposed approach and the illegality of the use of the principle of ambiguity to intensive thermal quantities. As a proof of the error of the approach, the relations for the thermal conductivities of the component elements of a heat pump that implements a multi-valued measure of thermal conductivity are given, and the limiting cases are considered. In two ways, it is established that the thermal conductivity of the specified measure does not depend on the value of the supplied heat flow. It is shown that the declared accuracy of the thermal conductivity measurement method does not correspond to the actual achievable accuracy values and the standard for the unit of surface heat flux density GET 172-2016. The estimation of the currently achievable accuracy of measuring the thermal conductivity of solids is given. The directions of further research and possible solutions to the problem are given.


2015 ◽  
Vol 135 (11) ◽  
pp. 1349-1350
Author(s):  
Kazuhiro Suzuki ◽  
Noboru Nakasako ◽  
Masato Nakayama ◽  
Toshihiro Shinohara ◽  
Tetsuji Uebo

Sign in / Sign up

Export Citation Format

Share Document