Using the matrix pencil method to analyze a 3D leaky wave antenna

Author(s):  
Amardeep Singh ◽  
Robert Paknys ◽  
David R. Jackson
2008 ◽  
Vol 6 ◽  
pp. 49-54 ◽  
Author(s):  
Y. Weitsch ◽  
T. F. Eibert

Abstract. The presented "open" composite left-handed/right-handed (CRHLH) substrate integrated waveguide performs well as a low-profile leaky wave antenna. This design is distinguished due to the fact that it is derived from the approved equivalent circuit model of the H10 rectangular hollow waveguide mode. The wave propagation behaviour is visualised by the dispersion diagram calculated by two different methods, infinite periodic full-wave simulation and Matrix-Pencil analysis of driven field solutions. The periodic configuration is also analysed in terms of the Bloch impedance. Although FR-4 serves as substrate the antenna features an efficiency of about 50% to 60%. The radiation performance demonstrates nearly backfire to almost endfire scanning capability of the antenna by mere frequency variation. Broadside radiation is possible due to the balanced state at 4 GHz.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5065
Author(s):  
Daniel Chaparro-Arce ◽  
Sergio Gutierrez ◽  
Andres Gallego ◽  
Cesar Pedraza ◽  
Felix Vega ◽  
...  

This paper presents a technique, based on the matrix pencil method (MPM), for the compression of underwater acoustic signals produced by boat engines. The compressed signal, represented by its complex resonance expansion, is intended to be sent over a low-bit-rate wireless communication channel. We demonstrate that the method can provide data compression greater than 60%, ensuring a correlation greater than 93% between the reconstructed and the original signal, at a sampling frequency of 2.2 kHz. Once the signal was reconstituted, a localization process was carried out with the time reversal method (TR) using information from four different sensors in a simulation environment. This process sought to achieve the identification of the position of the ship using only passive sensors, considering two different sensor arrangements.


2021 ◽  
Vol 119 (3) ◽  
pp. 034104
Author(s):  
Rodrigue Tchema ◽  
Nectarios C. Papanicolaou ◽  
Anastasis C. Polycarpou

Sign in / Sign up

Export Citation Format

Share Document